
DESIGN AND IMPLEMENTATION OF IPV6 ADDRESS
AUTOCONFIGURATION FOR AODV IN MOBILE AD HOC

NETWORKS*

Youngmin Kim1, Sanghyun Ahn1, Youngju Lee1, Jaehoon Jeong2, and Jaehwoon Lee3

Summary

An advantage of the mobile ad hoc network (MANET) is that mobile nodes can self-organize
the network topology without the help of network infrastructure. However, for the perfect self-
organization of the MANET, each mobile node needs to self-configure its address. Even though a
mobile node configures a unique address during the booting time, its address may conflict with
nodes in other MANETs since MANETs containing the same address can be merged. The address
autoconfiguration protocol implemented in this work consists of the strong DAD (Duplicate
Address Detection) and the weak DAD. A unique address of a node is assigned by the strong
DAD during the booting time and the weak DAD is used to detect address conflict and resolve
address conflict during the ad hoc routing. In this work, we have implemented address
autoconfiguration in the IPv6-based MANET using AODV as the routing protocol. We describe
how the IPv6 address autoconfiguration is implemented and verify our implementation by
showing the test scenarios on our testbed.

Introduction

Mobile nodes in MANET can self-organize multi-hop wireless paths without the help of

network infrastructure. Thus, public interest of ad hoc networking is being increased not only in
battle fields or emergencies where the infrastructured network is difficult to deploy, but also at
home and office.

Most researches on MANET focus on the area of routing, and the IETF MANET working

group has published AODV (Ad Hoc On Demand Distance Vector) [1][2], OLSR (Optimized
Link State Routing), TBRPF (Topology Dissemination Based on Reverse-Path Forwarding) and
so on as RFCs. However, in order to accomplish the self-organization of the network topology,
mobile nodes should be able to self-configure their addresses as well as routes. Even though a
mobile node self-configures its address during the booting time, address conflict may happen
when two or more MANETs are merged. Therefore, address autoconfiguration must have a
scheme to detect and resolve this address conflict. The node that has to resolve address conflict
also needs a scheme to keep the on-going connections associated with the conflicted address,
such as TCP sessions.

Due to the advance in networking technology and the desire of human being for convenience,

a number of electronic equipments can be handled via networks. The IPv6 address, which has the
address space of 128 bits, will be adopted as the standard in order to be able to assign unique

1 University of Seoul, Seoul, 130-743, Korea
2 University of Minnesota, Minneapolis, MN 55455, USA
3 Dongguk University, Seoul, 100-715, Korea
* This work was sponsored by ETRI (Electronics and Telecommunications Research Institute).
* This work was supported by grant No. R01-2004-10372-0 from the Basic Research Program of the Korea
Science & Engineering Foundation.

addresses to more devices. Therefore, in our implementation, we have adopted the IPv6
addressing.

In this work, we have designed and implemented the IPv6 address autoconfiguration protocol

for AODV on the basis of the work of the ad hoc IP address autoconfiguration for AODV [3] and
show how the IPv6 address autoconfiguration protocol works in our testbed. The ad hoc IP
address autoconfiguration for AODV defines message formats for address autoconfiguration, and
explains how the address autoconfiguration protocol is integrated with AODV.

Related Work

Address autoconfiguration protocols can be classified into stateful and stateless approaches.
DHCP (Dynamic Host Configuration Protocol) [4] is the representative protocol of the stateful
approach, which is usually used in wired networks. Address conflict never occurs in the network
using DHCP because the DHCP server keeps state information on the addresses that have already
been assigned.

In MANET where each mobile node can move around, it is not feasible that a mobile node

maintains a connection with a DHCP server and a DHCP server manages address information on
nodes. Thus, it is a more feasible approach that mobile nodes make use of the stateless approach
where each node selects its address and asks other nodes whether it conflicts with others. The
IPv6 stateless address autoconfiguration [5][6] is designed for wired networks, and can assign a
unique address by exchanging information with only directly connected nodes.

However, the IPv6 stateless address autoconfiguration designed for a subnet link [6] does not

work in the multihop ad hoc network, thus [7] presents a new scheme of address
autoconfiguration for MANET. A mobile node places a randomly selected address in an address
request (AREQ) message and broadcasts it to MANET to which it belongs. If the address of a
node receiving the AREQ message is the same as that of the AREQ message, the node replies
with an address reply (AREP) message via the reverse route established by the AREQ message.
On the other hand, the originator of the AREQ message can know that the candidate address does
not conflict with others if it receives no AREP message until the timer for the AREP message
expires, and it configures the address in its network interface as a permanent address. A serious
drawback of this scheme is that address duplication due to network merging cannot be resolved.
The strong DAD (Duplicate Address Detection) is the time-based DAD based on the hop-count
and the timer of the DAD control message for the purpose of checking if there is address
duplication in a connected MANET partition within a finitely bounded time [8]. However, the
strong DAD may not detect a duplicate address of a node out of the range of the hop-count (or
TTL) of the DAD control message, so as a result the weak DAD has been proposed [8].

The Weak DAD [8] and the passive DAD [9] are able to detect and resolve even address

conflict that can arise after two or more MANETs merge. A mobile node adds a key to the
routing control message in the weak DAD. The key can be chosen once by each node either
randomly or based on a universally unique ID. Each node stores both the address and the
interface key for address autoconfiguration. Then, a node can figure out address conflict when the
address of the node is the same as that of the sender of a routing control message but their
interface keys are different. The passive DAD can detect address duplication with using the
sequence number of the routing control message and without using the additional information
such as the interface key.

In this work, we have implemented the ad hoc IPv6 address autoconfiguration for AODV on
the basis of the Internet drafts of Jeong [3][10][11] that contain the strong DAD, the weak DAD
and the maintenance of upper-layer sessions. In [11], the requirements for IP address
autoconfiguration in ad hoc networks are specified. [10] shows steps to autoconfigure IPv4 or
IPv6 addresses, defines message formats, and specifies how to resolve the address duplication in
order to guarantee the maintenance of upper-layer sessions, such as TCP sessions.

Ad hoc IPv6 address autoconfiguration for AODV

The ad hoc IPv6 address autoconfiguration for AODV consists of the strong DAD and the
weak DAD [3][10]. The address of a node is assigned by the strong DAD during the booting time.
And the weak DAD is used to detect address conflict and resolve the conflict by routing control
messages after booting because the strong DAD may not detect duplicate addresses caused by
network merging. Three kinds of addresses are used in the strong DAD: temporary, tentative and
permanent address. A temporary address is temporarily used as the source address of a node
during the strong DAD, and a tentative address is a candidate address included in the AREQ
message. After the timer for address duplication checking expires, the tentative address becomes
a permanent address and the node configures the address in its wireless network interface.

When a mobile node moves, its address may conflict with those of other nodes either out of

range of the hop-count of a control message or in other MANETs. The weak DAD can detect and
resolve this address conflict through routing control messages including additional fields, such as
the network interface key.

Each node makes use of both the address and the interface key in order to perform the weak

DAD. If a mobile node detects address conflict by the weak DAD and has sessions that were
generated while the conflicted address was used, the node needs to maintain the upper-layer
sessions through some address handover even after the duplicate address is replaced with a new
address. Our address handover scheme is based on the IP-over-IP tunneling where the duplicate
address is placed in the source address of the inner IP header and the new address in the source
address of the outer IP header [3][10]. We will describe how the ad hoc IPv6 address
autoconfiguration for AODV is implemented in detail.

Implementation of the ad hoc IPv6 address autoconfiguration for AODV

We have implemented the ad hoc IPv6 address autoconfiguration for AODV, one of the most

popular MANET routing protocols, on the linux kernel 2.4.21. We modified the AODV of NIST
[12] to make AODV protocol for IPv6.

Fig. 1 shows the message formats for the ad hoc IPv6 address autoconfiguration for AODV.

The detailed message formats are specified in [3][10]. The strong DAD is carried out by RREQ-
AREQ and RREP-AREP messages that include a tentative address. Each mobile node can detect
address conflict with the RREQ or RREP message including the interface key, and resolve
address conflict with the RREP-AERR message by means of the weak DAD.

RREQ or RREP

Interface Key

AREQ or AREP

RREQ or RREP

Interface Key

(a) A message for strong DAD (c) Control message for AODV

RREP

Interface Key

AERR

(b) A message for weak DAD
Figure 1 Message formats for the ad hoc IPv6 address autoconfiguration for AODV

Fig. 2 shows how a RREQ-AREQ message is transmitted as a part of the strong DAD.

Temporary and tentative addresses are randomly chosen to build a RREQ-AREQ message and
broadcasted MANET-widely. If a node receives a RREP-AREP message from another node
which implies address duplication, it transmits another RREQ-AREQ message with a newly
generated tentative address. The node fails to have a permanent address if it continues to send
RREQ-AREQ messages until fail_cnt becomes zero, indicating that every tentative address, a
candidate address for a permanent address, has conflicted with the addresses occupied by other
nodes. The tentative address is chosen as a permanent address of the node only when the node has
never received any RREP-AREP messages until the number of retransmitted RREQ-AREQ
messages becomes AREQ-RETRIES. The reason for performing address duplicate detection
multiple times is to ensure the detection of address conflict in the dynamic and error-prone
MANET environment.

Begin

(1) Assign temporary address
to network interface

(2) Generate random tentative
address for AREQ and make

RREQ-AREQ message
fail_cnt = AAA_FAIL

(3) retry = AREQ_RETRIES
timeout = ADDRESS_DISCOVERY

TTL = TTL_STRONG_DAD

(4) Send RREQ-AREQ created in (2)

(5) Wait RREP-AREP for timeout

(6) Receive an RREP-AREP?

(8) retry == 0?

(7) retry--

No

fail_cnt--

fail_cnt == 0?

(2') Generate random tentative
address for AREQ and make

RREQ-AREQ message

No

Yes

(9) Assign permanent address
to network interface

End

Yes

Yes
No

Figure 2 Strong DAD procedure at a newly joined node

The netfilter [13] of linux kernel is used to handle messages for the ad hoc IPv6 address

autoconfiguration for AODV. When a node receives a RREQ-AREQ message, if the address of
the node is different from the tentative address of the RREQ-AREQ message, it stores the
information in order to prevent it from receiving duplicate packets and sends the packet to
event_queue so that it can rebroadcast the RREQ-AREQ message. If the addresses are the same,
the node generates a RREP-AREP message and sends it to event_queue so that the kernel thread
aaa_thread can transmit the packet to the originator of the RREQ-AREQ message in order to
inform it of address conflict.

In order to detect address conflict in the middle of route setup of AODV, the node checks

whether both the originator address and the interface key of the received packet are the same as

those of the node itself or in routing table. If the addresses do not conflict, the packet is processed
as normal. Otherwise, it generates a RREP-AERR message with code 0 indicating the occurrence
of address conflict and sends to event_queue. This procedure is specified in Fig. 3.

RREQ or Hello?

Address conflict?
(with different key)

Generate RREP-AERR
(code=0)

Add the packet to event_queue

Return NF_ACCEPT Return NF_DROP

In RREQ_queue?

Add the pair of RREQ_ID and
originator of RREQ to

RREQ_queue

Add RREQ to event_queue

Pick an event from event_queue

Type?

Send RREP-AERR
(code=0) to the originator
of RREQ or Hello through

AODV reverse path

Rebroadcast RREQ to
link-local address ff02::1

event_queue

aodv_thread

Yes

No

Yes

No

Yes

No

NETFILTER

Packets

aodv_input_handler

Event 4 Event 3

Event 4 Event 3

Hello?
No

Yes

Figure 3 Weak DAD procedure during route setup

The node that receives a RREP-AERR message can resolve the conflict through the

procedure in Fig. 4. If the node is not the destination of the RREP-AERR message, it forwards the
message to the next hop. Otherwise, it takes a proper action according to the code in the RREP-
AERR. Since code 0 means that another node with the same address exists in the MANET, the
node changes its address through the strong DAD. In addition, it should inform its peer nodes of
its new address by sending RREP-AERR messages with code 1 so that the communicating
sessions can be preserved. When a node receives a RREP-AERR message with code 1, it can
become aware that the originator address of the message is changed. And, the node adds
information about old and new addresses to its address mapping cache address_map_cache
maintaining the association of a duplicate address and a new address so that it can preserve the
old sessions through the IP-over-IP tunneling. The node should also send a RREP-AERR
message with code 2 to the originator of the RREP-AERR message with code 1 as a reply in
order to confirm that it recognizes the address change and is ready to receive packets using the
new source address.

Tests in a MANET testbed

Four laptops, installing redhat 9.0 with kernel 2.4.21, were prepared in order to test the

implemented address autoconfiguration for AODV. A tentative address should be generated

randomly, but we added an ability to assign a predefined address to the tentative address so that
address conflict can occur intentionally.

RREP-AERR

This node == dest
of RREP-AERR

Add RREP-AERR
(code=0) to

event_queue

Return NF_ACCEPT

Perform strong DAD
Update

address_map_cache

Pick an event from event_queue

Type?

Send RREP-AERR
(code=0) to next hop

towards the destination
of the RREP-AERR

Send RREP-AERR
(code=2) to the originator
to indicate the success of

addr mapping

event_queue

aodv_thread

Yes

No

No

Yes

NETFILTER

Packets

aodv_input_handler

Event 5 Event 7

Event 5 Event 7

Code?
Code==1

Code == 2

Start packet transmission
through IPv6-in-IPv6 tunneling

Code==0

Add RREP-AERR(code=1)
containing new addr to

event_queue

Event 6

Add RREP-AERR
(code=2) to

event_queue

Send RREP-AERR (code=1)
to each peer node in order to

indicate address change

Event 6

Figure 4 Procedure at a node receiving a RREP-AERR message

Node B and C have their own addresses, but node A does not have an address yet in Fig. 5.

Therefore, node A has to autoconfigure an address via the strong DAD. Node B and C already
know each other by exchanging Hello messages. Node A chooses ADDR3, the same address as
node C, as its tentative address and then broadcasts a RREQ-AREQ message so that node B
having a route entry for node C is able to detect address conflict.

Since a route entry having the same address as the tentative address of the received RREQ-

AREQ message with the different interface key already exists in the routing table of node B (i.e.,
ADDR3, ADDR3, KEY3), node B transmits a RREP-AREP message to node A. Both node A
and C receive the message, but node C discards it because the interface keys are different. Node
A transmits a RREQ-AREQ message with a new tentative address after receiving the RREP-
AREP message. If node A does not receive any RREP-AREP messages until the timer expires, it
retransmits the RREQ-AREQ message with the same tentative address. If the node does not
receive any RREP-AREP messages while it retransmits the same RREQ-AREQ message three
times, it configures the tentative address in its wireless interface as a permanent address.

In Fig. 6, MANET 1 consists of node A, B and C, and MANET 2 has only node D, and the

address of node A is the same as that of node D. Node C and D update their routing tables by
exchanging Hello messages after merging. Node C cannot detect address conflict up to then. If
node D broadcasts a RREQ message with its interface key in order to communicate with node B,

the node B can detect address conflict and transmits to node D the RREP-AERR message with
code 0 because it knows the information on node A. Then, node D performs the strong DAD to
autoconfigure its new address.

Node name: A
Address: NONE
Inf_key: KEY1

Node name: B
Address: ADDR2
Inf_key: KEY2

Node name: C
Address: ADDR3
Inf_key: KEY3

Routing Table
dst_addr next_hop inf_key
ADDR3 ADDR3 KEY3

Routing Table
dst_addr next_hop inf_key
ADDR2 ADDR2 KEY2

Start strong DAD
(tentative addr : ADDR3)

RREQ-AREQ

Tentative addr of AREQ is the same
as the dst_addr of routing table, but

inf_keys are different

Change the tentative addr to
ADDR1

RREP-AREP

RREQ-AREQ
RREQ-AREQ

RREQ-AREQ RREQ-AREQ

Time out

Time out
Assign ADDR1 to interface as

permanent addr

MANET 1

Destination addr of the packet
is me but inf_keys are

different, so it is discarded

RREP-AREP

Figure 5 Test scenario for the verification of the strong DAD

Node name: A
Address: ADDR1
Inf_key: KEY1

Node name: B
Address: ADDR2
Inf_key: KEY2

Node name: C
Address: ADDR1
Inf_key: KEY3

Routing Table
dst_addr next_hop inf_key
ADDR1 ADDR1 KEY1
ADDR3 ADDR3 KEY3

dst_addr next_hop inf_key
ADDR2 ADDR2 KEY2

Hello

Routing Table
dst_addr next_hop inf_key
ADDR2 ADDR2 KEY2

MANET 1 MANET 2

Routing Table

Node name: C
Address: ADDR3
Inf_key: KEY3

Node name: D
Address: ADDR1
Inf_key: KEY4

Routing Table
dst_addr next_hop inf_key

MANET 1 and 2 merge

Update routing tableUpdate routing table

Node D wants to
communicate with node B

RREQRREQ

Originator addr of RREQ is the same as
one of the dst_addr of routing table, but

inf_keys are different

RREP-AERR (code 0)
RREP-AERR (code 0)Destination addr of the packet

is me but inf_keys are
different, so it is discarded

RREP-AERR (code 0)

Detection of address
duplication

Start strong DAD

Figure 6 Test scenario for the verification of the weak DAD when two networks merge

We have verified the correctness of our implemented address autoconfiguration for AODV.

However, since linux kernel 2.4.21 does not provide the tunneling mechanism, we could not
implement the modules to maintain upper-layer sessions.

Conclusion and future work

We have presented the design and the implementation of the ad hoc IPv6 address

autoconfiguration to facilitate the address configuration of mobile nodes placed in the MANET
based on AODV. A mobile node not only can autoconfigure its address during the booting time
via the strong DAD, but also can resolve address conflict during the ad hoc routing via the weak
DAD and address handover based on the IP-over-IP tunneling. Besides, we have verified that the
strong and the weak DAD work well in our MANET testbed.

As future work, this implementation will have to include the passive DAD that can detect

address conflict without additional information such as the interface key. Moreover, we will need
to remove the redundant information between routing control messages (e.g., RREQ or RREP)
and the messages for address autoconfiguration (e.g., AREQ or AREP) so that the size of the
entire message can be reduced.

References

1. C. Perkins, E. Belding-Royer, and S. Das, “Ad Hoc On-Demand Distance Vector (AODV)

Routing”, RFC 3561, July 2003.
2. C. Perkins, E. Royer, and S. Das, “Ad Hoc On-Demand Distance Vector (AODV) Routing

for IP version 6”, Internet draft, draft-ietf-manet-aodv6-01.txt, Nov. 2000.
3. J. Jeong et al., “Ad Hoc IP Address Autoconfiguration for AODV”, Internet draft, draft-

jeong-manet-aodvaddr-autoconf-01.txt, July 2004.
4. R. Droms, “Dynamic Host Configuration Protocol”, RFC 2131, Mar. 1997.
5. T. Narten, E. Nordmark, and W. Simpson, “Neighbor Discovery for IP version 6”, RFC

2461, Dec. 1998.
6. S. Thomson and T. Narten, “IPv6 Stateless Address Autoconfiguration”, RFC 2462, Dec.

1998.
7. C. Perkins et al., “IP Address Autoconfiguration for Ad Hoc Networks”, Internet draft,

draft-ietf-manetautoconf-01.txt, Nov. 2001.
8. N. Vaidya, “Weak Duplicate Address Detection in Mobile Ad Hoc Networks”, In Proc.

ACM MobiHoc 2002, June 2002.
9. K. Weniger, “Passive Duplicate Address Detection in Mobile Ad Hoc Networks”, In Proc.

IEEE WCNC 2003, Mar. 2003.
10. J. Jeong et al., “Ad Hoc IP Address Autoconfiguration”, Internet draft, draft-jeong-adhoc-

ip-addrautoconf-04.txt, Feb. 2005.
11. J. Jeong et al., “Requirements for Ad Hoc IP Address Autoconfiguration”, Internet draft,

draft-jeong-manetaddr-autoconf-reqts-04.txt, Feb. 2005.
12. Kernel AODV. http://w3.antd.nist.gov/wctg/aodv kernel/
13. Netfilter. http://www.netfilter.org/

