
NDR: Name Directory Service in Mobile Ad-Hoc Network

Jae-Hoon Jeong, Jung-Soo Park, Hyoung-Jun Kim

Electronics and Telecommunications Research Institute
{paul,pjs,khj}@etri.re.kr

 Abstract This paper proposes the name service architecture
called as name directory service (NDR) for the exchange of
domain name, IP address and user information among the users
of mobile nodes in mobile ad-hoc network. NDR provides DNS
service for mobile user in the environment of mobile ad-hoc
network where the current dedicated name server is difficult to
use for DNS service. It also allows the mobile user to perceive
other users in the range of communication and to communicate
with the person with whom he or she wants to communicate by
providing mobile user with user information (or profile) of the
neighbors. It can also solve the address conflict that may be
caused by the repetitive partition and mergence of ad-hoc
networks. We suggest the design and service scenario of the NDR
system.

 Keywords name service, directory service, DNS, user
information, autoconfiguration, mobile ad-hoc network, address
conflict.

1. Introduction

Mobile Ad-hoc Network (MANET) consists of mobile nodes
that take part in routing so as to communicate with one another
in the environment where there is no communication
infrastructure [1][2]. Small Office Home Office (SOHO)
networks, home-networks, and internal networks of transport
vehicles such as airplane, train and bus can be constructed with
ad-hoc networking. Up to recently ad-hoc routing protocols
for unicasting, multicasting and flooding have been researched
but the research of addressing, naming, name service and
application in ad-hoc networks have been started over the
whole world. In this paper, we focused on naming and name
service in MANET, where the current dedicated DNS is
impossible to adopt in order to provide name service for
mobile nodes. Because MANET has dynamic network
topology, the current DNS that has the hierarchical structure
cannot be adopted in MANET. Recently, in IETF DNSEXT
working group, the name service system for name service in
ad-hoc network or home-network has been being developed
[3]. The system is called as LLMNR (Link-Local Multicast
Name Resolution) and the scope of name service of LLMNR
is link-local [4]. It cannot be used to provide name service in
multi-hop ad-hoc network yet. Name Directory Service
(NDR) proposed in this paper not only provides name service
in multi-hop ad-hoc networks, but also allows mobile user in
mobile node to perceive the neighbors and their user
information that is necessary to decide whether the neighbor is
the man with whom the user wants to communicate. NDR can
also solve the address conflict that is caused by repetitive
partition and mergence of ad-hoc networks. For example, we

assume that two mobile nodes of which each is placed in other
partitioned ad-hoc network have the same address. Although
the IP address of each mobile node is unique in each
partitioned ad-hoc network, when two disconnected ad-hoc
networks become merged by the movement of mobile nodes,
the address conflict occurs. This address conflict problem
cannot be detected and settled in the current IP (IPv4 or IPv6)
protocol implementation. NDR can solve this address conflict.

We also suggest an autoconfiguration (zero-configuration)
technology for generating a unique domain name related to
each network device (or interface) of mobile node. The
naming suggested in this paper is useful in ad-hoc network
where there is no network manager to assign each user a
unique domain name. Accordingly, we suggest a name service
system called as NDR providing four name services for each
mobile node like Figure 1; (a) Automatic name generation, (b)
Name-to-address translation, (c) Collection of user
information of neighbor nodes, and (d) Detection and
settlement of address conflict.

Figure 1. NDR Service in each Mobile Node

The rest of the paper is structured as follows; In Section 2,

we explain the related work. The organization and operation of
the system for name directory service (NDR) are suggested in
Section 3. The name services in NDR are also explained. In
Section 4, the service scenario of NDR is described. Section 5
shows the comparison between NDR and LLMNR in respect
of functionality. In Section 6, we conclude this paper and
present future work.

2. Related Work

In this section, we explain LLMNR which provides the name

service for nodes in link-local scoped network and the
autoconfiguration technology which provides users with the
automation of configuration and network services related to
elemental networking.

2.1 Link-Local Multicast Name Resolution (LLMNR)

Figure 2. Procedure of the Resolution from Domain Name to IPv6

Address through LLMNR

Link-Local Multicast Name Resolution (LLMNR) has been
devised for the resolution between domain name and IP
address in the link-local scoped network [4]. Figure 2 shows
the procedure of the resolution from domain name to IPv6
address in a subnet through LLMNR. Sender is the resolver
that sends LLMNR query in link-local multicast and
Responder is the name server that sends the LLMNR response
to Sender in unicast. When Sender receives the response, it
verifies if the response is valid. If the response is valid, Sender
stores it in LLMNR cache and passes the response to the
application that initiated the DNS query. Otherwise, Sender
ignores the response and continues to wait for other responses.
Unless Sender receives any response during a limited amount
of time (LLMNR_ TIMEOUT, 1 [sec]), it retransmits
LLMNR query by 3 times in order to assure itself that the
query has been received by a node which is capable of
responding to the query.

2.2 Autoconfiguration Technology

Figure 3. Autoconfiguration Technology

IETF Zeroconf working group has defined the technology by
which the configuration necessary for networking is
performed automatically without manual administration or
configuration in the environment, such as small office home
office (SOHO) networks, airplane networks and home
networks, as zero-configuration (autoconfiguration) [5]. Four
main mechanisms regarding the autoconfiguration technology
of Figure 3 are being researched; (a) IP interface configuration,
(b) Name service (e.g., Translation between host name and IP
address), (c) IP multicast address allocation, and (d) Service
discovery [6].

3. Name Directory Service (NDR)

Like Figure 4, Name Directory Service (NDR) provides
mobile users with not only the name service such as
name-to-address translation in multi-hop ad-hoc network, but
also the directory service allowing mobiles user to perceive the
neighbors and to exchange user information that is necessary
to decide whether the neighbor is the man with whom the user
wants to communicate. Every mobile node runs NDR Daemon
for name directory service like Figure 4. NDR Database
contains user information for identifying each other and DNS
resource records for name service. The application that needs
name resolution can resolve name into IP address through
NDR Daemon. NDR Daemon performs not only the function
of DNS resolver, but also that of DNS name server.

Figure 4. Name Service through NDR in MANET

Mobile Node A and Mobile Node B in Figure 4 can identify
the user of the other and resolve the domain name of the other
through its NDR Daemon.

3.1 Architecture of NDR System

NDR system consists of two processes so as to perform NDR
service like Figure 5; (a) NDR Daemon and (b) NDR Shell.

Figure 5. Architecture of NDR System

3.1.1 NDR Daemon

NDR Daemon processes the collection of user information of
neighbor nodes, the name-to-address resolution, and the
detection and settlement of IP address conflict. It consists of
four threads; (a) Main-Thread, (b) Send-Thread, (c)
Recv-Thread, and (d) UI-Thread.

(a) Main-Thread : It performs the initiation of NDR Daemon
including the generation of unique domain name of mobile
node and the registration of user information and domain name
into NDR database. It also executes three worker threads
(Send-Thread, Recv-Thread, and UI-Thread).

(b) Send-Thread : It generates an NDR message packet for
name and directory service and sends it to the neighbor
node(s). NDR messages consist of the request message and the
response message of user information and DNS resource
record.

(c) Recv-Thread : It receives an NDR message packet for
name and directory, processes the message, and sends the
response to the source node.

(d) UI-Thread : As user-interface thread, it receives a request
related to NDR from NDR Shell, relays the request to
Main-Thread that processes it and returns the result of the

request received from Main-Thread to NDR Shell. Also, it
performs the role of DNS resolver, which receives DNS query
from an application in the same node and returns DNS
response to the application like Figure 5

3.1.2 NDR Shell

NDR Shell is the user-interface process for a user who wants
to get the information of neighbors. It receives a request from
user, relays the request to UI-Thread of NDR Daemon through
UNIX datagram socket. After NDR Daemon processing the
request, it receives the result of UI-Thread, it displays the
result to the user.

3.2 Procedure of NDR Service

Figure 6. Procedure of NDR Daemon’s Operation

Figure 7. Structure of NDR Table and NDR Record

Figure 8. NDR Configuration File (NDR.conf)

The collection of user information and domain name is
performed through NDR Daemon on demand, namely only
when user initiates the collection of user information of
neighbor nodes through NDR Shell. Figure 6 shows the
procedure of NDR Daemon, which consists of five steps.

Step1 : NDR Daemon starts. NDR Daemon runs Main-Thread.

Step2 : Main-Thread generates a unique domain name per
network device. Main-Thread makes a unique domain name
based on network interface identifier which is unique over the
whole world. We explain the mechanism of the name
generation in detail in Section 3.3.1.

Step3 : Main-Thread makes an NDR record per unique domain
name and registers the NDR record in NDR database. NDR
record is a tuple in NDR table which forms NDR database and
it contains user information (User Name, Affiliation, Email
Address), DNS name information (Domain Name and IP
Address), flag (Flag) indicating if the record belongs to this
node itself or other node and time-to-live (TTL) that is the
caching time of NDR record like Figure 7. Flag can have two
values. One is “LOCAL” and the other is “REMOTE”. The
former indicates that the record belongs to this node itself and
the latter indicates that the record belongs to other node. User
information and domain of the node are stored in the
configuration file called “NDR.conf” like Figure 8.

Step 4 : Main-Thread creates three worker threads; (a)
Send-Thread, (b) Recv-Thread, and (c) UI-Thread.

Step 5 : Three worker threads run to perform their own duty.

(a) Send-Thread : It sends a request message received from
user or application to neighbor nodes or sends a response
message corresponding to a request message to the requester.
NDR Daemon uses the multicasting in order to exchange
information among one another. In case of IPv4, it uses an
administrative scoped IPv4 multicast address,
“239.255.1.251” for IPv4 NDR multicast group and in case of
IPv6, it uses a site-local scoped IPv6 multicast address,
“FF05:0:0:0:0:3::1” for IPv6 NDR multicast group.
Send-Thread sends NDR request message to neighbor nodes
in multicast and sends NDR response message to the requester
in unicast.

(b) Recv-Thread : It receives a request messages from a
neighbor node or receives a response message from a
responder. Recv-Thread joins NDR multicast group in order to
receive the multicast NDR message packets. When it receives
a request message, it processes the message and delivers the
response message to Main-Thread. Main-Thread delivers the
message to Send-Thread, which sends the NDR message
packet including the response message. When Recv-Thread
receives a response message corresponding to the request
message, it delivers the message to Main-Thread.
Main-Thread stores each response from each responder in
NDR database. After the collection of information,

Main-Thread delivers the result to UI-Thread, which sends the
result to NDR Shell or Application like Figure 5.

(c) UI-Thread : It receives a request from NDR Shell or
Application and returns the result of the request to NDR Shell
or Application.

3.3 Name Service through NDR

The name service is composed of name generation, name

resolution (name-to-address translation), and the process of IP
address conflict.

3.3.1 Name Generation

The mechanism of name generation makes a unique domain
name with user-id, device-id (network device's address
extended into EUI-64 identifier) and domain like Figure 9 [7].

Figure 9. Generation of a Unique Domain Name

user-id is the user identifier selected by user and device-id is
EUI-64 identifier derived from the network device's built-in
48-bit IEEE 802 address. domain should include “EUI-64”
sub-domain which indicates that the domain name is based on
EUI-64. We define the domain for ad-hoc network as
EUI-64.ADHOC. For example, supposing that user-id is
“PAUL”, device-id is “36-56-78-FF-FE-9A-BC-DE”, and
domain is “EUI-64.ADHOC”, a unique domain name would
be “PAUL.36-56-78-FF-FE-9A-BC-DE.EUI-64.ADHOC”.
user-id and domain are registered in NDR.conf of Figure 8.

The merit of the above mechanism guarantees that no name
conflict happens although users in other nodes use the same
user-id without the procedure of verifying the uniqueness of
domain name like dynamic update request of LLMNR [4].

3.3.2 Name Resolution

Each mobile node can resolve a domain name into IP address
easily and fast because IP address corresponding to each
domain name in NDR record is already listed in NDR table
without the additional procedure to resolve name into address
unlike the current DNS. The application that needs name
resolution can resolve name into IP address through NDR
Daemon like Figure 4. When the application sends a DNS
query to NDR Daemon through the name resolution function
related to NDR Daemon, NDR Daemon processes the query
and returns the result to the application. Like this, NDR
Daemon performs not only the function of DNS resolver, but
also that of DNS name server in the environment of ad-hoc
network where there is no DNS name server like LLMNR [4].

3.3.3 Detection and Settlement of IP Address Conflict

NDR can not only provide basic name service to mobile
nodes in a connected ad-hoc network, but also detect and settle
the address conflict when it perceive that the IP address of its
own comes into conflict with that of other node. Because
ad-hoc network has dynamic topology, the network is
partitioned and merged on and on. The current IP mechanism
can detect the address conflict after an IP address is configured
in network device (or interface), but can not settle the conflict.
As an example of address conflict on the ad-hoc network that
uses on-demand ad-hoc routing protocol such as AODV and
DSR [8][9], like Figure 10 (a), when these two MANETs (i.e.,
MANET 1 and MANET 2) that have a node with the same
address in their own network (Mobile node A and E have the
same address) are merged into one MANET (i.e., MANET3)
like Figure 10 (b), one of these two nodes (i.e., Mobile node A
and E) tries to communicate with a third-party node (e.g.,
Mobile node D) and sends a route discovery message, an
address conflict happens. Because mobile node A, one of these
two nodes, sends a route discovery message packet to start the
route discovery like Figure 10 (b), the other node, mobile node
E, can perceive that other node which has the same address as
its own address has started the route discovery.

Figure 10 (a). Two Partitioned Networks : MANET 1 and MANET 2

Figure 10 (b). One Merged Network : MANET 3

The current IP stack in ad-hoc network can perceive address
conflict in the level of ad-hoc routing protocol implementation,
but not settle the conflict, namely not substituting the
conflicted address with a new address.

If an ad-hoc routing protocol implementation can detect the
address conflict related to its own IP address, it asks NDR
Daemon to settle the address conflict. Through ad-hoc
stateless address autoconfiguration, NDR Daemon configures
a new IP address in the network device where the address
conflict happened [10][11]. Unless ad-hoc routing protocol
can detect address conflict, NDR can detect the address
conflict when NDR Daemon collects the information of
neighbor nodes (i.e., user information and DNS name
information). When NDR Daemon detects the address conflict,
it initiates the reconfiguration of a new IP address for network
device configured with the conflicted IP address through
ad-hoc stateless address autoconfiguration [10][11].

According to the reconfiguration of IP address, NDR
Daemon updates IP Address field of the NDR Record related
to the conflicted address.

4. NDR Service Scenario

Figure 11. NDR Service Scenario

Figure 11 shows the scenario of the communication among

mobile nodes in ad-hoc network through NDR. Mobile nodes
MN-A, MN-B and MN-C are joining NDR multicast group.
For IPv4 NDR multicast group, an administrative scoped IPv4
multicast address “239.255.1.251” is used and for IPv6 NDR
multicast group, a site-local scoped IPv6 multicast address
“FF05:0:0:0:0:3::1” is used. In Figure 11, A user in MN-A
whose name is “Paul” wants to know the neighbors in the
same ad-hoc network. First of all, he issues a command that
requests the collection of neighbor information through NDR

Shell. NDR Shell delivers user’s request to NDR Daemon and
NDR Daemon sends an NDR Request Message for NDR
Record of neighbor node in multicast. When Mobile nodes
MN-B and MN-C receive the request message, each sends its
NDR Record through a NDR Response Message to the
requester, MN-A. When MN-A receives a response message
from neighbor, it stores the neighbor’s NDR Record in its
NDR DB. When the collection of neighbor information
completes after a predefined collection time, NDR Daemon
delivers the information of neighbor nodes to user “Paul” via
NDR Shell. User “Paul” finds that the user of MN-C, “Mary”,
is whom he wants to communicate with and he tries to connect
to MN-C. MN-C accepts the request of the connection from
MN-A. Like this, mobile users can perceive the neighborhood
and can communicate with the person with whom he or she
wants to communicate.

5. Comparison between NDR and LLMNR

Table 1. Comparison between NDR and LLMNR
Functionality NDR LLMNR

Automatic name generation yes no
Need of verifying the uniqueness
of domain name no yes

Perception of neighborhood yes no

Service scope
site-local

 or
 link-local

link-local

Detection and settlement of IP
address conflict yes no

Service of name-to-address
translation yes yes

Number of the request message
packets to resolve the domain
names of n nodes

O(1) O(n)

Table 1 shows the comparison between NDR and LLMNR in

respect of functionality. An important merit of NDR over
LLMNR is that NDR needs one NDR request message packet
to resolve the domain names of n neighbor nodes but LLMNR
needs n DNS query message packets to do so. Like Table 1,
NDR has more functions related to name service than LLMNR
in that NDR includes autoconfiguration technology and uses
less message packets to resolve domain name [6][7].

6. Conclusion

This paper suggested a name service scheme called name
directory service (NDR) in mobile ad-hoc network where the
current DNS is difficult to adopt so as to provide mobile users
with name service. NDR provides users with not only the
name service, but also the exchange of user information that is
needed to identify the neighbor in a connected ad-hoc network.
NDR also provides the mechanism to generate a unique
domain name based network device identifier per network
device without the network manager unlike the current DNS
and the mechanism to detect and settle the address conflict.
 For future work, we will enhance NDR to provide secure
name service and simulate to evaluate the performance of
NDR and LLMNR in ad-hoc network. Finally, we will
implement the Secure NDR (SNDR) and autoconfiguration

technologies related to name service in mobile ad-hoc network
[12]-[14].

REFERENCES

[1] Elizabeth M. Royer and Chai-Keong Toh, “A Review of Current Routing

Protocols for Ad Hoc Mobile Wireless Networks”, IEEE Personal
Communications, April 1999.

[2] IETF Manet working group,
 http://www.ietf.org/html.charters/manet-charter.html
[3] IETF Dnsext working group,
 http://www.ietf.org/html.charters/dnsext-charter.html
[4] Levon Esibov and Dave Thaler, “Linklocal Multicast Name Resolution

(LLMNR)”, (work in progress) draft-ietf-dnsext-mdns-12, August 2002.
[5] IETF Zeroconf working group,
 http://www.ietf.org/html.charters/zeroconf-charter.html
[6] A. Williams, “Requirements for Automatic Configuration of IP Hosts”,

(work in progress) draft-ietf-zeroconf-reqts-12, September 2002.
[7] Jae-Hoon Jeong, Jung-Soo Park and Hyoung-Jun Kim, “Generation of

Unique Domain Name based on Network Device Identifier”,
draft-jeong-name-generation-00, October 2002.

[8] Charles E. Perkins, Elizabeth M. Belding-Royer and Samir R. Das, “Ad
hoc On-Demand Distance Vector (AODV) Routing”, (work in progress)
draft-ietf-manet-aodv-12, November 2002.

[9] David B. Johnson et al., “The Dynamic Source Routing Protocol for
Mobile Ad Hoc Networks (DSR)”, (work in progress)
draft-ietf-manet-dsr-07, February 2002.

[10] Charles E. Perkins et al., “IP Address Autoconfiguration for Ad Hoc
Networks”, draft-perkins-manet-autoconf-01.txt, Nov 2001.

[11] Stuart Cheshire, Bernard Aboba and Erik Guttman, "Dynamic
Configuration of IPv4 Link-Local Addresses", (work in progress)
draft-ietf-zeroconf-ipv4-linklocal-07, February 2003.

[12] ETRI Project for Research and Implementation of IPv6-based Ad-hoc
Autoconfiguration Technology, http://www.adhoc.6ants.net

[13] Jaehoon Jeong and Jungsoo Park, “Autoconfiguration Technologies for
IPv6 Multicast Service in Mobile Ad-hoc Networks”, 10th IEEE
International Conference on Networks, Aug. 2002.

[14] Jaehoon Jeong and Jungsoo Park, “Autoconfiguration Technology for
IPv6-based Mobile Ad-hoc Network”, ICIS'02, Aug. 2002.

