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Abstract—In road networks, sensors are deployed sparsely (hun-
dreds of meters apart) to save costs. This makes the existing
localization solutions based on the ranging be ineffective. To address
this issue, this paper introduces an autonomous passive localization
scheme, called APL. Our work is inspired by the fact that vehicles
move along routes with a known map. Using binary vehicle-detection
timestamps, we can obtain distance estimates between any pair of
sensors on roadways to construct a virtual graph composed of sensor
identifications (i.e., vertices) and distance estimates (i.e., edges). The
virtual graph is then matched with the topology of road map, in order
to identify where sensors are located in roadways. We evaluate our
design outdoor in Minnesota roadways and show that our distance
estimate method works well despite of traffic noises. In addition, we
show that our localization scheme is effective in a road network with
eighteen intersections, where we found no location matching error,
even with a maximum sensor time synchronization error of 0.3 sec
and the vehicle speed deviation of 10 km/h.

I. INTRODUCTION

Localization of sensors is a prerequisite step to find target
positions for most military applications, including surveillance and
target tracking. In these applications, it has been envisioned that
for the fast, safe deployment, unmanned aerial vehicles drop a
large number of wireless sensors into road networks around a
target area. Many localization approaches have been proposed in
the context of such a scenario. They use either precise range
measurements (e.g., TOA [1], TDOA [2], and AOA [3]) or
connectivity information (e.g., Centroid [4], APIT [5], SeRLoc
[6], and Gradient [7]), between sensors to locate nodes’ locations.
Unfortunately, all of them ignore an important fact: To cover
a large area, sensors have to be deployed sparsely (hundreds
of meters apart) to save costs. In this sparse deployment, since
sensors cannot reach each other either through ranging devices
(e.g., Ultrasound signals can only propagate 20∼30 feet) nor
single-hop RF connectivity, previous solutions become ineffective.

To address this issue, we propose an Autonomous Passive
Localization (APL) algorithm for extremely-sparse wireless sensor
networks. This algorithm is built upon an observation: Military
targets normally use roadways for maneuver, therefore, only the
sensors near the road are actually useful for surveillance. The
sensors away from the roadway can only be used for communica-
tion, since targets are out of their sensing range. In other words,
it is not important to localize them. Under such a scenario, the
research question is how sensors on/near a road can identify their
positions in a sparse deployment without any pair-wise ranging
or connectivity information.

The high-level idea of our solution is to use vehicles on
roadways as natural events for localization. The solution would
be trivial if all nodes are equipped with sophisticated vehicle
identification sensor, because it is relatively easy to measure the
distance between two sensors by multiplying vehicles’ average
speed by Time Difference on Detection (TDOD) between two
sensors corresponding to the same vehicle. Obviously vehicle
identification sensors would be costly in terms of hardware, energy
and computation. Therefore, the challenging research question is
how to obtain locations of the sensors, using only binary detection
results without the vehicle identification capability in sensors.

Our main idea is as follows. Through statistical analysis of
vehicle-detection timestamps, we can obtain distance estimates
between any pair of sensors on roadways to construct a virtual
graph composed of sensor identifications (i.e., vertices) and dis-
tance estimates (i.e., edges). The virtual graph is then matched
with the topology of the known road map. A unique mapping
allows us to identify where sensors are located in roadways.

Specifically, our localization scheme consists of three phases:
(a) the estimation of the distance between two arbitrary sensors
in the same road segment; (b) the construction of the connectivity
of sensors on roadways; (c) the identification of sensor locations
through matching the constructed connectivity of sensors with the
graph model for the road map. Our key contributions in this paper
are as follows:

• A new architecture for autonomous passive localization using
only binary detection of vehicles on the road networks. Un-
like previous approaches, APL is designed specially for sparse
sensor networks where long distance ranging is difficult, if
not impossible.

• A statistical method to estimate road-segment distance be-
tween two arbitrary sensors, based on the concept of Time
Difference on Detection (TDOD).

• A prefiltering algorithm for selecting only robust edge dis-
tance estimates between two arbitrary sensors in the same
road segment. Unreliable path distance estimates are filtered
out for better accuracy.

• A graph-matching algorithm for matching the sensor’s iden-
tification with a position at the road map of the target area.

The rest of this paper is organized as follows. Section II describes
the problem formulation. Section III explains the system design.
Section IV evaluates our algorithm. We summarize related work
in Section V and conclude our work in Section VI.
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(e) Reduced Virtual Subgraph con-
sisting of Intersection Nodes of Vir-
tual Graph: G̃v = (Ṽv , Ẽv)
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Fig. 1. Wireless Sensor Network deployed in Road Network

II. PROBLEM FORMULATION

We consider a network model where sensors are placed at both
intersection points and non-intersection points on road networks.
The objective is to localize wireless sensors deployed in road
networks only with a road map and binary vehicle-detection
timestamps taken by sensors as shown in Figure 1(a). We define
eight terms as follows:

1. Intersection Nodes Sensors placed at an intersection and hav-
ing more than two neighboring sensors (i.e., degree ≥ 3). In
Figure 1(a), sensors a and c are intersection nodes.

2. Non-intersection Nodes Sensors placed at a non-intersection
and having one or two neighboring sensors. In Figure 1(a), sensors
b and d are non-intersection nodes.

3. Virtual Topology Let Virtual Topology be Hv = (Vv,Mv),
where Vv = {s1, s2, ..., sn} is a set of sensors in the road network,
and Mv = [vij ] is a matrix of path length vij for sensors si and
sj . Figure 1(b) shows a virtual topology of sensors to the road
network, shown in Figure 1(a). Mv is a complete simple graph,
since there is an edge between two arbitrary sensors. We define the
edge of the virtual topology as virtual edge. In Figure 1(b), among
the virtual edges, a solid black line represents an edge estimate
between two sensors, which means that they are adjacent on the
road network. The dotted gray line represents a path estimate
between two sensors, which means that they are not adjacent on
the road network.

4. Virtual Graph Let Virtual Graph be Gv = (Vv, Ev), where
Vv = {s1, s2, ..., sn} is a set of sensors in the road network,
and Ev = [vij ] is a matrix of road segment length vij between

sensors si and sj . Figure 1(c) shows a virtual graph of the sensor
network deployed on the road network shown in Figure 1(a), where
the black node represents an intersection node and the gray node
represents a non-intersection node.

5. Reduced Virtual Subgraph Let Reduced Virtual Subgraph be
G̃v = (Ṽv, Ẽv), where Ṽv = {s1, s2, ..., sm} is a set of sensors
placed only at intersections in the road network, and Ẽv = [vij ] is
a matrix of road segment length vij between intersection nodes si

and sj . The reduced virtual subgraph G̃v is obtained by deleting
non-intersection nodes and their edges from the virtual graph Gv

through the degree information in Gv . Refer to Section III-D1. For
example, Figure 1(e) shows a reduced virtual subgraph consisting
of only intersection nodes of virtual graph in Figure 1(c).

6. Real Graph Let Real Graph be Gr = (Vr, Er), where Vr =
{p1, p2, ..., pn} is a set of intersections in the road network around
the target area, and Er = [rij ] is a matrix of road segment length
rij for intersections pi and pj . Real Graph can be obtained through
map services, such as Google Earth and Yahoo Maps. Figure 1(f)
shows a real graph corresponding to the road network that consists
of only intersection points, shown in Figure 1(d). The real graph
is isomorphic to the reduced virtual subgraph graph G̃v shown in
Figure 1(e) [8].

7. Shortest Path Matrix Let Shortest Path Matrix for G =
(V,E) be M such that M = [mij ] is a matrix of the shortest path
length between two arbitrary nodes i and j in G. M is computed
from E by the All-Pairs Shortest Paths algorithm, such as the
Floyd-Warshall algorithm [9]. We define Mr as the shortest path
matrix for the real graph Gr = (Vr, Er), and define Mv as the
shortest path matrix for the virtual graph Gv = (Vv, Ev).

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.



Prefiltering

APL Server

Sensor Node is
Traffic Analysis

Node Location
Notification

Vehicle
Detection

Repository

kt

),( ii Ts

),( ii ls

vH

),( Ts

),( ls

P

Vehicle
Detection

Timestamps

Graph Matching

Location
Identification

P

vG

1

2

3

4

5 6vG
~

Fig. 2. APL System Architecture

8. APL Server A computer that performs the localization algo-
rithm with binary vehicle-detection timestamps collected from the
sensor network.

The localization design of APL is based on the following
assumptions:

• Sensors have simple sensing devices for binary vehicle de-
tection without any costly ranging or GPS devices [10]. Each
detection is a tuple (si, tj), consisting of a sensor ID si and
timestamp tj .

• Sensors are time-synchronized at the millisecond level. This
can be achieved easily because many state-of-art solu-
tions [11], [12] can achieve microsecond level accurate.

• The APL server has road map information for the target area
under surveillance and can construct a real graph consisting
of intersections in the road network.

• There is an ad-hoc network or a delay tolerant network for
wireless sensors to deliver vehicle-detection timestamps to
the APL server.

• Vehicles pass through all road segments on the target road
networks. The vehicle mean speed is close (but not identi-
cal) to the speed limit assigned to roadways. The standard
deviation of vehicle speed is assumed to be a reasonable
value, based on real road traffic statistics obtained from
transportation research [13].

III. APL SYSTEM DESIGN

A. System Architecture

We use an asymmetric architecture for localization as in Fig-
ure 2 in order to simplify the functionality of sensors for local-
ization. As simple devices, sensors only monitor road traffic and
register vehicle-detection timestamps into their local repositories.
A server called the APL server processes the complex computation
for localization. Specifically, the localization procedure consists of
the following steps as shown in Figure 2:

• Step 1: After road traffic measurement, sensor si sends the
APL server its vehicle-detection timestamps along with its
sensor ID, i.e., (si, Ti), where si is sensor ID and Ti is
timestamps.

• Step 2: The traffic analysis module estimates the road seg-
ment length between two arbitrary sensors with the timestamp
information, constructing a virtual topology Hv = (Vv,Mv),
where Vv is the vertex set of sensor IDs, and Mv is the matrix
containing the distance estimate of every sensor pair.

• Step 3: The prefiltering module converts the virtual topology
Hv into a virtual graph Gv = (Vv, Ev), where Vv is the
vertex set of the sensor IDs, and Ev is the adjacency matrix
of the estimated road segment lengths.

• Step 4: The graph-matching module constructs a reduced
virtual subgraph G̃v = (Ṽv, Ẽv) from the virtual graph Gv ,
where Ṽv is a set of intersection nodes among Vv , and Ẽv

is a set of edges whose endpoints both belong to Ṽv . G̃v is
isomorphic to the real graph Gr = (Vr, Er). Then the graph-
matching module computes a permutation matrix P , making
the reduced virtual subgraph G̃v = (Ṽv, Ẽv) be isomorphic
to the real graph Gr = (Vr, Er).

• Step 5: The location identification module determines each
sensor’s location on the road map by applying the permu-
tation matrix P to both the reduced virtual subgraph G̃v

and the real graph Gr. Through this mapping, node location
information (s, l) is constructed such that s is the sensor
ID vector, and l is the corresponding location vector; that is,
li = (xi, yi), where i is the sensor ID, xi is the x-coordinate,
and yi is the y-coordinate in the road map.

• Step 6: With (s, l), the APL server sends each sensor si its
location with a message (si, li).

In the rest of this section, we describe the technical content of
each step. We start with the second step, because the operations
in step 1 are straightforward.

B. Step 2: Traffic Analysis for Road Segment Length Estimation

In order to estimate road segment lengths, we found a key
fact that vehicle arrival patterns in one sensor are statistically
maintained at neighboring sensors close to the sensor. This means
that the more closely the two sensors are located, the more
correlated the vehicle-detection timestamps are. Consequently,
we can estimate road segment length with estimated movement
time between two adjacent sensors using the correlation of the
timestamp sets of these two sensors, along with the vehicle mean
speed (i.e., speed limit given on the road segment). Through both
outdoor test and simulation, we found that we can estimate the
lengths of road segments used by vehicles during their travels on
roadways only with vehicle-detection timestamps.

1) Time Difference on Detection (TDOD) Operation: The Time
Difference on Detection (TDOD) for timestamp sets Ti and Tj

from two sensors si and sj is defined as follows:

dij
hk = |tih − tjk| (1)

where tih ∈ Ti for h = 1, ..., |Ti| is the h-th timestamp of sensor
si and tjk ∈ Tk for k = 1, ..., |Tj | is the k-th timestamp of sensor
sj . We define a quantized Time Difference on Detection (TDOD)
as follows:

d̂ij
hk = g(dij

hk) (2)

where g is a quantization function to map the real value of dij
hk to

the discrete value. The interval between two adjacent quantization
levels is defined according to the granularity of the time difference,
such as 1 second, 0.1 second or 1 millisecond. The number m
of quantization levels (i.e., qk for k = 1, ...,m) is determined
considering the expected movement time of vehicles in the longest
road segment of the relevant road network.
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Fig. 5. Estimation of Movement Time through TDOD Operation

We define frequency as the count of a discrete time difference.
After the TDOD operation for two timestamp sets from two
sensors, the quantization level with the highest frequency (i.e.,
d̂ij) is regarded as the movement time of vehicles for the roadway
between these two sensors si and sj as follows:

d̂ij ← arg max
qk

f(qk) (3)

where f is the frequency of quantization level qk for k = 1, ...,m.
The movement time on the road segment can be converted into
road segment length using the formula l = vt, where l is the road
segment’s length, v is the vehicle mean speed, and t is the vehicle
mean movement time on the road segment. For example, Figure 3
shows the detection sequence for vehicles at intersection nodes
s1, s2, and s3 in Figure 1(e), where s2 is a common neighbor
of s1 and s3. Figure 4 shows the TDOD operation for nodes s1

and s2 that is a kind of Cartesian product for two timestamp sets.
Figure 5 shows the histogram obtained by the TDOD operation for
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Fig. 6. Road Networks for Outdoor Test

TABLE I
OUTDOOR TEST RESULTS

Expected Measured
Road Segment Distance Movement Time Movement Time

A and B 800 m 45 sec 43 sec
C and D 800 m 45 sec 43 sec
B and C 900 m 51 sec 54 sec
D and A 900 m 51 sec 56 sec

two timestamp sets. The time difference value (7.3sec) with the
highest frequency indicates the estimated movement time between
two nodes.

We performed outdoor test to verify whether our TDOD opera-
tion could give good estimates for road segment lengths in terms of
vehicle movement time. The results of outdoor test indicate that
our TDOD can give reasonable road segment length indicators.
Figure 6 shows the road map of local roadways in Minnesota for
outdoor test. The test roadways consist of four intersections A,
B, C, and D. Speed limit on these road segments is 64 km/h
(or 40 mph). We performed vehicle detection manually for more
accurate observation; Note that it is hard to get accurate vehicle
detections at intersections with the current motes due to the sensor
capability and mote’s physical size, so the development of the
vehicle detection algorithm based on motes is our future work.

Table I shows the expected movement times and measured
movement times for these four road segments through TDOD.
It can be seen that the estimated movement times are close to
the expected movement times. Thus, with the TDOD, a virtual
topology can be constructed, as shown in Figure 1(b), containing
the distance between two arbitrary nodes, called virtual edge.

2) Enhancement of the Road Segment Length Estimation:
We found that an estimate close to real road segment length
cannot always be obtained by the maximum frequency through
the TDOD operation discussed previously. The reason is that
there are some noisy estimates with higher frequencies than an
expected good estimate. In order to resolve this problem, we
introduce an aggregation method where the mean of several
adjacent time differences becomes a new TDOD value, and the
sum of frequencies of those is the corresponding frequency. This
is based on an observation that time differences close to a real
time difference (i.e., movement time needed by a vehicle with
the vehicle mean speed on a road segment) have relatively high
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frequencies by the TDOD operation for two timestamp series, as
shown in Figure 4. On the other hand, we observe that a noisy
estimate with the highest frequency occurs randomly, and its
neighbor estimates have relatively low frequencies. This method
based on TDOD aggregation is called as the Aggregation Method
and the previous simple TDOD is called as the Non-aggregation
Method. We determine the aggregation window size proportionally
to standard deviation σv of the vehicle speed, such as c · σv for
c > 0.

Figure 7 shows the comparison between the non-aggregation
method and aggregation method through simulation. We found
that for the road segment between sensors s2 and s3 in Figure 1(e)
whose real time difference is 9.36 sec with the vehicle speed
µv=50 km/h, the non-aggregation method makes a wrong estimate
(i.e., 26.8 sec), but the aggregation method makes a correct
estimate (i.e., 9.3 sec). Thus, this aggregation method is used to
obtain good estimates for road segment lengths in virtual topology.
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C. Step 3: Prefiltering Algorithm for a Virtual Graph

The prefiltering algorithm is performed to make a virtual graph
that has only edge estimates from the virtual topology obtained
from the TDOD operations in Section III-B. We observe that the
TDOD operation discussed in Section III-B gives large errors in
path estimates between two arbitrary sensors in virtual topology.
The reason is that when two sensors are separated far from
each other, the correlation between the two timestamp sets from
them is reversely proportional to the distance between the two
sensors. On the other hand, the edge estimates (i.e., estimates
for road segments) produced by the TDOD operation are much
more accurate due to the high correlation of the timestamps. From
this observation, we filter out all inaccurate path estimates from
the virtual topology, except for edge estimates so that the virtual
topology can be converted into a virtual graph. However, there
still remain accurate path estimates of two sensors separated from
each other by approximately two or three road segments. We can
filter out the accurate path estimates using the fact that the shortest
estimate should usually be an edge estimate, and a path estimate
consists of such edges. Thus, our prefiltering algorithm consists
of two prefilterings:

1) Prefiltering based on the Relative Deviation Error and
2) Prefiltering based on the Minimum Spanning Tree.

We explain the prefiltering procedure and the effect of two
prefilterings on virtual topology using Figure 8. As shown in
Figure 8(a), there is a partial road network of the entire one shown
in Figure 1(a) containing sensors {s1, s2, s3, s4, s5, s19, s20, s22}.
In the virtual topology, two arbitrary sensors among them have a
distance estimate, as shown in Figure 8(b). Using the prefiltering
based on the relative deviation error, we remove the virtual
topology’s edges corresponding to inaccurate path estimates, and
we then construct a virtual graph, shown in Figure 8(c). Next we
apply the prefiltering based on the minimum spanning tree to
the virtual graph, so the virtual graph containing only the edge
estimates is constructed by removing accurate path estimates, as
shown in Figure 8(d). In this section, we explain the idea of these
two prefilterings for obtaining the virtual graph Gv = (Vv, Ev)
from virtual topology Hv = (Vv,Mv) in detail.

1) Prefiltering based on the Relative Deviation Error: Large
errors in path estimates will significantly affect our future steps.
An example is as follows: We know that the smallest entry in Mv

must be an edge when no large error occurs, since path lengths
are always the sum of several edge lengths. However, when there
are large errors in Mv, they can have any value in Mv , that is,
either a large value or a small value. In this case, the smallest
entry will be no longer regarded as an edge estimate rather than
a path estimate perturbed by a large error. As a result, it is very
important to filter out all the entries having large errors at first,
regarding them as path estimates.

We define Relative Deviation (φ) as the ratio of the standard
deviation (σ) to the mean (µ), that is, φ = σ/µ. To compute both
the mean and the standard deviation of each entry in Mv , We use
multiple estimation matrices of Mv per measurement time with
the same duration. In order to compute the relative deviations of
the estimates, we divide the vehicle-detection timestamps into time
windows (e.g., every one hour) and perform the TDOD operation
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for the timestamps of two arbitrary sensors within the same time
window. We then compute the relative deviations of the virtual
edge estimates for each pair of sensors. If the relative deviation is
greater than a certain threshold ε (e.g., ε = 5%), the corresponding
entry is regarded as a path estimate, and it is replaced with ∞,
indicating that this entry is a path estimate.

2) Prefiltering based on the Minimum Spanning Tree: Suppose
that there are n sensors in the virtual topology. Let Mv be the
n× n adjacency matrix of the virtual topology. Prefiltering based
on the Minimum Spanning Tree consists of two steps: The first
step identifies the first n − 1 edges of the virtual graph, and the
second step identifies the remaining edges of the virtual graph.

Step 1: We select n− 1 edges from Mv that make a Minimum
Spanning Tree (MST) for the virtual topology by using a Mini-
mum Spanning Tree algorithm, such as Prim’s algorithm [9]. We
have proved that the n−1 edges that form the MST are definitely
edge estimates in our technical report [14].

Step 2: In order to find all of the other edges of the virtual
graph Gv = (Vv, Ev), as shown in Figure 1(c), with n− 1 edges
obtained by the previous step, we compute the shortest paths
between all pairs of nodes and create a new matrix M ′

v . We
use the fact that M ′

v(i, j) ≥ Mv(i, j). For an arbitrary pair of
nodes i and j, M ′

v(i, j) is the shortest path created only by
n− 1 edges, while Mv(i, j) is the one created from more edges;
that is, Mv(i, j) might be shorter than M ′

v(i, j). In our technical
report [14], we prove that Mv(i, j) must be an edge estimate if
it is the smallest one among all of the entries in Mv that satisfies
Mv(i, j) < M ′

v(i, j), since there is no entry with large error after
the previous filtering. Consequently, Mv(i, j) is the n-th edge
estimate. We update the set of edges by adding this new edge,
and we also update the matrix M ′

v using the new set. We repeat
this process until M ′

v and Mv are exactly the same. In this way,
we can find out all of the other edge estimates of Ev from Mv.

D. Step 4: Graph Matching

In this section, we explain how to construct a reduced virtual
subgraph from the virtual graph constructed by the prefiltering in
Section III-C, and then how to match the reduced virtual subgraph
and the real graph that are isomorphic to each other [8].

1) Construction of the Reduced Virtual Subgraph: In order
to perform isomorphic graph matching, two graphs should be
isomorphic. Since the virtual graph Gv returned from the pre-
filtering module has more vertices and edges than the real graph
Gr, we cannot perform isomorphic graph matching directly. From
the observation that each intersection node has at least three
neighboring sensors, a reduced virtual subgraph G̃v is made from
the virtual graph as follows:
Let Gv = (Vv, Ev) be a virtual graph. Let N be a set of non-
intersection nodes of Gv . Let dGv

(u) be the degree of u in the
graph Gv . Let euv be the edge whose endpoints are u and v for
u, v ∈ Vv . Let l(e) be the length of the edge e ∈ Ev . We perform
the following for all u ∈ N :

• If dGv
(u) = 1, then delete u from Gv and delete an edge

whose one endpoint is u from Gv .
• If dGv

(u) = 2, then delete u from Gv , merge the two edges
eux and euy , whose one endpoint is u, into one edge exy .
The length of the edge exy is set to l(eux) + l(euy).

2) Weighted Graph Matching: Since the reduced virtual sub-
graph’s Ẽv and the real graph’s Er are isomorphic, our graph
matching can be defined as searching for the n × n permutation
matrix P to satisfy the following, in which P is the row permu-
tation matrix, and PT is the column permutation matrix:

Φ(P ) = ‖Er − PẼvP
T ‖22 (4)

P ← arg min
P̂

Φ(P̂ ) (5)

Êv ← PẼvP
T (6)

Let P be an n × n optimal permutation matrix of Eq. 5 in
terms of the minimum estimation error. The result Êv of Eq. 6
is a matrix isomorphic to Er where indices in both matrices
indicate the node identifications; that is, the sensor ID in Ẽv

corresponds to the intersection ID in Er for i = 1, ..., n. This
optimization problem is called the Weighted Graph Matching
Problem (WGMP). In order to get the exact solution P , allowing
the global minimum of Φ(P ), all of the possible cases should
be checked. Since this is a purely combinatorial problem, the
algorithm based on combination has the time complexity of O(n!)
for n nodes. Consequently, this is an unfeasible approach in
reality. We need to use approximate approaches to give an accurate
permutation matrix P , such as an eigendecomposition approach
to WGMP [15], known as an optimal approach. For our graph
matching purpose, we adopt the eigendecomposition approach that
has polynomial time complexity.

We investigated the effect of the real vehicle mean speed
different from the speed limit on roadways. The conclusion is
that as long as all of the road segments have the same constant
scaling factor for their mean speeds, our localization algorithm
works well regardless of the distribution of the vehicle mean speed
during traffic measurement! In other words, our algorithm works
even though the actual speeds are unknown. In the case where
each road segment has a different scaling factor according to
unbalanced congestion conditions, our algorithm does not work
well. To address this issue, we suggest to conduct measurements
under a light road traffic condition, such as during night. Without
congestion, we expect that all of the road segments tend to have
the same constant scaling factor for their mean speeds. We have
detailed proof on this subject. One can refer to our technical
report [14] for detailed information.

E. Step 5: Node Location Identification

In this section, we explain how to identify the location of each
intersection node with the permutation matrix obtained through
the graph matching in Section III-D, and then how to identify the
location of each non-intersection node.

1) Localization of Intersection Nodes: We perform the identi-
fication of each intersection node’s location with the permutation
matrix P returned from the graph-matching module. Let the per-
mutation function σ(s) be a map corresponding to the permutation
matrix P

σ : s ∈ {1, ..., n} → p ∈ {1, ..., n}, (7)

that is, p = σ(s) where s is the sensor ID and p is the intersection
ID. With the permutation function in Eq. 7, we can identify the
intersection ID (p) on the road map for each intersection node (s).
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2) Localization of Non-intersection Nodes: In the previous
section, we know the positions of the intersection nodes. Now
we localize the positions of the non-intersection nodes. Using Ev

of the virtual graph Gv , we begin from an intersection node u,
and we create a path from u to another intersection node v, that is,
u→ a1 → a2 → · · · → am → v. All ai for i = 1, ...,m are non-
intersection nodes whose degrees are 2. Since we have already
localized nodes u and v, and all of these ai must be placed on the
edge from u to v on the reduced virtual subgraph G̃v , as shown
Figure 1(e), we can know the positions of these ai by looking at
the length information in Ev of the virtual graph Gv , as shown in
Figure 1(c). We repeat this procedure until we localize all of the
non-intersection nodes in the virtual graph.

IV. PERFORMANCE EVALUATION

As we explain in the introduction, there is no other solution ap-
propriate to our scenario for localization in road networks. Instead
of comparing our schemes with other state-of-the-art schemes, we
investigate the effect of the following three parameters on our
localization scheme:

• The time synchronization error standard deviation,
• The vehicle speed standard deviation, and
• The vehicle interarrival time.

We present two kinds of performance evaluations as follows:
First, we compare the aggregation-based estimation method with
the nonaggregation-based estimation method in terms of the
estimation accuracy for road segment length. For the estimation
accuracy, the Matrix Error Ratio is defined as the ratio of the sum
of the entries of the absolute difference of two matrices (i.e., Er

and Ev) to the sum of the entries of reference matrix (i.e., Er).
Second, we evaluate the performance of each localization method
consisting of a combination of the aggregation-based estimation
method and prefiltering types below that use the same graph-
matching algorithm specified in SectionIII-D. The Localization
Error Ratio is defined as the ratio of the number of incorrectly
localized sensors to the number of all sensors deployed on the
road network. We just deploy intersection nodes for simplicity.

TABLE II
SIMULATION ENVIRONMENT

Parameter Description
Number of 18 sensors (from s1 to s18) are deployed in the road network,

sensors as shown in Figure 1.
Simulation Sensors perform vehicle detection for 10 hours and store the

time vehicle-detection timestamps into their repositories.
Time synch. Sensor time synchronization error conforms to a uniform distribution

error with the interval [−εmax, εmax] where εmax=0.01 sec.
Vehicle Vehicle speed conforms to a Gaussian distribution of N(µv, σ2

v)

speed where µv = 50 km/h and σv = 5 km/h. Vehicle’s maximum
distribution speed is 80 km/h and vehicle’s minimum speed is 20 km/h.
Interarrival Every vehicle arrives at road network according to an exponential

time distribution with mean interarrival time 1/λ = 120 sec.
Vehicle Let du,v be the shortest path distance from source intersection u

travel and destination intersection v in road network. Vehicle’s travel
length path length from u and v conforms a Gaussian distribution of

distribution N(µd, σ2
d) where µd = du,v m and σd = 500 m.

The simulation environment based on SMPL [16] is described
in Table II. From road traffic measurement, we create a matrix Mv

for the virtual topology as the average of 10 matrices Mvs that are

adjacency matrices of the virtual topology created from the same
measurement time, such as one hour; that is, Mv is the all-pairs
shortest path estimation matrix for the virtual topology.

A. Performance Comparison between Road Segment Estimation
Methods

We compare the performance of localization schemes according
to the following two road segment estimation methods:

1) The aggregation-based road segment estimation and
2) The nonaggregation-based road segment estimation.

After the estimation, we perform the prefiltering algorithm de-
scribed in Section III-C and the graph matching algorithm de-
scribed in Section III-D in order to evaluate the Matrix Error Ratio
and Localization Error Ratio.

For the maximum time synchronization error, Figure 9 shows
the performance comparison between the aggregation and non-
aggregation methods. For the aggregation method, the Matrix
Error Ratio is less than 0.03, which indicates that Ẽv of the
reduced virtual subgraph G̃v is very close to the Er of the real
graph Gr, as shown in Figure 1, where G̃v is a subgraph of
the virtual topology Hv . It can be seen that most Matrix Error
Ratios of the aggregation method are less than the Matrix Error
Ratios of the nonaggregation method. That is why the aggregation
method gives better localization than the nonaggregation method.
From Figure 9(b), we can see that our localization works well
in the case in which the maximum time synchronization error
is less than 0.4 seconds. We can claim that our localization
scheme can work in the real environment, since the state-of-the-
art time synchronization protocols can give the accuracy at the
microsecond level [11], [12].
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Fig. 9. Performance Comparison between Aggregation and Nonaggregation
Methods for Maximum Time Synchronization Error (εmax)

For the vehicle speed deviation, as shown Figure 10, the
aggregation method outperforms the nonaggregation method in
that the Matrix Error Ratio of the aggregation method is less
that that of the nonaggregation method. Also, that is why the
aggregation method can give more accurate localization than the
non-aggregation method, except for the vehicle speed deviation
of 15 km/h. This speed deviation of 15 km/h is the value out
of the operational region for our localization scheme, so the
corresponding localization error ratio is always a random value
close to 1. However, considering the real statistics [13] that the
vehicle speed deviation in four-lane roadways is 9.98 km/h, and
the vehicle speed deviation in two-lane roadways is 8.69 km/h,
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it can be claimed that our localization can work in the real
environment, since our localization scheme works with the vehicle
speed deviation less than 10 km/h.
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Fig. 10. Performance Comparison between Aggregation and Nonaggregation
Methods for Vehicle Speed Deviation (σv)

For the vehicle interarrival time, as shown Figure 11, we see that
it does not affect the performance of our localization scheme. The
reason is that our TDOD operation can give accurate estimates
for road segment lengths, as long as the vehicle interarrival time
is larger than 1 second and it allows enough road traffic to cover
all of the road segments. In fact, most people drive their vehicles
with the interarrival time longer than 1 second for their safety,
so we can claim that our localization works under normal driving
condition. For the aggregation method, the Matrix Error Ratio is
less than 0.015, which indicates that Ẽv of the reduced virtual
subgraph G̃v is very close to the Er of the real graph Gr. This is
why the aggregation method gives 100% localization, except for
1-second vehicle interarrival time. Also, we can see that all of the
Matrix Error Ratios of the aggregation method are less than those
of the nonaggregation method.
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Fig. 11. Performance Comparison between Aggregation and Nonaggregation
Methods for Vehicle Interarrival Time (1/λ)

B. Performance Comparison among Prefiltering Types

We compare the performance of localization schemes, according
to the following three prefiltering types:

1) Prefilter 1: Prefiltering based on the minimum spanning tree
described in Section III-C2,

2) Prefilter 2: Prefiltering based on the relative deviation error
described in Section III-C1, and

3) APL Prefilter: Prefiltering based on both the relative devia-
tion error and the minimum spanning tree.

Each prefiltering type uses a matrix Mv created by the
aggregation-based road segment method. After the prefiltering

step and the construction step of a reduced virtual subgraph
G̃v = (Ṽv, Ẽv), the same graph-matching algorithm described in
Section III-D is applied to the output matrix Ẽv in order to evaluate
the Localization Error Ratio. From Figure 12, our localization with
APL Prefilter works well under reasonable, real environment in
which the maximum time synchronization error is less than 0.4
sec, and the vehicle speed deviation is less than 12.5 km/h. As
we can see in Figure 12, one missing of the minimum-spanning-
tree-based prefilter (i.e., Prefilter 1) and the relative-deviation-
error-based prefilter (i.e., Prefilter 2) cannot allow the accurate
localization under the reasonable, real environment. This is why
we use the combination of two prefilters.
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C. APL Operational Region

We evaluate APL to see what range of time synchronization and
vehicle speed deviation it works well in. Figure 13 shows the APL
operational region that contains the range of the maximum time
synchronization error and the vehicle standard deviation to allow
a perfect localization under the simulation environment given in
Table II. Our localization scheme works well in the case in which
the vehicle standard deviation is less than 10 km/h, regardless of
the maximum time synchronization error from 0.01 to 0.1 sec.
This threshold for the vehicle standard deviation is close to the
real statistics of the vehicle speed deviation (e.g., 9.98 km/h for
four-lane roadways) [13]. For the vehicle interarrival time, our
localization works well as long as the interarrival time is greater
than 1 second. Thus, the vehicle speed deviation is the dominant
factor of the performance in our localization scheme.
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Also, we investigated what effects the detection missing and the
duplicate detection have for the whole localization accuracy by
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modeling the detection missing event and the duplicate detection
event as Bernoulli trial. The result is that our localization scheme
has no localization error under the simulation setting in Table II
with the detection missing probability from 0 to 0.2 at each sensor
and with the duplicate detection probability from 0.1 to 1 at each
sensor, respectively. Thus, it can be claimed that our localization
scheme can work in the real road networks with noises.

We have considered several practical issues in our extended
technical report [14] for the deployment of our localization scheme
in real road networks: (a) graph matching under intersection node
missing and (b) matching ambiguity due to topology symmetricity.
Due to space constraints, we cannot explain them in detail.

V. RELATED WORK

Many localization schemes have been proposed so far, and they
can be categorized into three classes: (a) Range-based localization
schemes, (b) Range-free localization schemes, and (c) Event-
driven localization schemes. Range-based schemes require costly
hardware devices to estimate the distance between nodes, along
with the additional energy consumption for them. The Time of
Arrival (TOA) (e.g., GPS [1]) and Time Difference of Arrival
(TDOA) schemes (e.g., Cricket [2] and AHLoS [17]) measure the
propagation time of the signal, and estimate the distance based on
the propagation speed. Since ultrasound signals usually propagate
only 20∼30 feet. TDOA is not quite suitable for sparse networks.
The Angle of Arrival (AOA) schemes [3] estimate the positions of
the nodes by sensing the direction from which a signal is received.
The Received Signal Strength Indicator (RSSI) schemes [18] use
either theoretical or empirical models to estimate the distance
based on the loss of power during signal propagation. Both AOA
and RSSI are also constrained by their effective distance.

The range-free localization schemes try to localize sensors
without costly ranging devices. One of the most popular range-
free schemes is based on anchor-based scheme. The main idea
is that the non-anchors can determine their locations using the
overlapped region of communication areas for the anchors [4],
[5], [19], [20]. However, since these schemes require a dense
deployment of anchors to give beacon signals, these solutions are
not applicable for the localization in sparse road networks.

Recently, a series of event-driven localization schemes have
been proposed to simplify the functionality of sensors for local-
ization, and to provide high-quality localization. The main idea
of these schemes is to use artificial events for sensor localization
that are generated from the event scheduler [21]–[24]. Although
their effective range can reach hundreds of meters, it needs
additional external devices and manual operations to generate
artificial events. On the other hand, our localization scheme is
a new branch of event-driven localization schemes. Because our
localization scheme is based on natural events of moving vehicles,
there is no such problem of the event delivery.

VI. CONCLUSION

In sparse sensor networks, sensors cannot effectively obtain
pair-wise ranging distance or connectivity information for the
purpose of localization. To address this issue, this work introduces
an autonomous passive localization scheme, called APL, using
only binary sensors. Our APL system performs the localization

using vehicle-detection timestamps along with the road map of
target area. As next step, we will perform the test of our APL
system in real road networks with Motes such as XSM and Micaz.
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