
APL: Autonomous Passive Localization for Wireless Sensors Deployed in Road Networks

Technical Report

Department of Computer Science

and Engineering

University of Minnesota

4-192 EECS Building

200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 07-016

APL: Autonomous Passive Localization for Wireless Sensors

Deployed in Road Networks

Jaehoon Jeong, Shuo Guo, Tian He, and David Du

July 02, 2007

APL: Autonomous Passive Localization for Wireless Sensors
deployed in Road Networks

Jaehoon Jeong, Shuo Guo†, Tian He and David H.C. Du
Department of Computer Science and Engineering, University of Minnesota

†Department of Electrical and Computer Engineering, University of Minnesota

jjeong@cs.umn.edu, guoxx080@umn.edu, {tianhe,du}@cs.umn.edu

Abstract
In road networks, sensor nodes are deployed sparsely (hun-

dreds of meters apart) to save costs. This makes the existing
localization solutions based on the ranging ineffective. To ad-
dress this issue, this paper introduces an autonomous passive
localization scheme, called APL. Our work is inspired by the
fact that vehicles move along routes with a known map. Using
vehicle-detection timestamps, we can obtain distance estimates
between any pair of sensors on roadways to construct a virtual
graph composed of sensor identifications (i.e., vertices) and dis-
tance estimates (i.e., edges). The virtual graph is then matched
with the topology of road map, in order to identify where sen-
sors are located in roadways. We evaluate our design in lo-
cal roadway and show that our distance estimate method works
well. In addition, we show that our localization scheme is ef-
fective in a road network with eighteen intersections, where we
found no location matching error, even with a maximum sen-
sor time synchronization error of 0.3[sec] and the vehicle speed
deviation of 10[km/h].

Categories and Subject Descriptors
C.2.4 [Computer Communication Networks]: Distributed

Systems; C.3 [Special Purpose and Application Based Sys-
tems]: Real-time and embedded systems

General Terms
Algorithms, Design, Architecture, Measurement, Experi-

mentation

Keywords
Wireless Sensor Networks, Localization

1 Introduction
Wireless sensor networks have been researched for a variety

of military applications, such as surveillance and target track-
ing. In particular, we have interest in the localization of wire-
less sensors for military applications in road networks around a
target area. We consider a scenario that unmanned aerial vehi-
cles drop a large number of wireless sensors into road networks
around a target area, as shown in Figure 1. We need only sensors
on the road to work for military applications in road networks
within the target area. On the other hand, sensors out of the road
are regarded as unimportant or useless, since they cannot per-
form surveillance for roadways. In this scenario, our problem is
how sensors on a road can recognize their positions on the road
network, which is referred to as the localization of sensors. Lo-
calization is a prerequisite step for most military applications,
including surveillance and target tracking, since the location of
sensor reporting is something that should be identified for the
sensor’s report to be useful.

Base Camp

Sensor on road Sensor out of road

Figure 1. Localization Scenario: Wireless sensors are
dropped by unmanned aerial vehicles for the surveillance
of road networks around a target area (i.e., Base Camp).

Road networks have unique characteristics different from
two-dimensional open fields in that most legacy localization
schemes have focused on the following premises: (a) There ex-
ist vehicles moving on roadways; and (b) Roadways are routes
on which vehicles move. Also, since we consider ad-hoc, mil-
itary scenarios on road networks, we throw a large number of
wireless sensors in the sky using airplanes for the deployment
of sensors on road networks, so the cost per sensor should be
considered. For road networks having these unique character-
istics, legacy localization schemes have limitations. First of
all, we can categorize legacy schemes into three kinds as fol-
lows: (a) Range-based schemes (e.g., TOA and TDOA [2, 25]);
(b) Range-free schemes (e.g., APIT); and (c) Artificial event-
based schemes (e.g., StarDust and Spotlight [21, 22]). First, for
the TOA scheme in [25], wireless sensors need GPS devices
that are costly and require additional energy consumption. This
approach will increase the cost of sensor deployment and the
energy consumption rate of sensors due to GPS devices. The
TDOA scheme in [2] has the limitation of requiring expensive
ranging devices and assumes that sensors are closely placed for
ranging based on electrical waves or ultrasound. For example,
in the TDOA scheme based on ultrasound, ranging devices can-
not be used for the localization of sensors placed far away on
the roadway, since ultrasound signals usually propagate only
20-30 feet. In order for the TDOA scheme based on ultrasound
to work on roadways, it will require a dense deployment of
sensors, thus leading to high-cost deployment. Second, range-
free schemes (e.g., APIT [7]) are based on anchor nodes with
GPS devices for self-localization. Non-anchor nodes without

1

GPS devices identify their locations using an intersection area
of communication circles of neighboring anchor nodes. This
approach cannot give accurate locations to non-anchor nodes
on the road when the anchor nodes are placed out of the road.
In order to let most roads have anchor nodes and let non-anchor
nodes be surrounded by anchor nodes, a large number of anchor
nodes should be dropped uniformly within a target area. Con-
sequently, this deployment will be costly. In the same way as
range-based schemes, when the spacing between the sensors is
so large for communication, the beacon signal from the anchor
nodes for localization cannot reach non-anchor nodes, so the
range-free schemes cannot work well, either. Third, the local-
ization schemes based on artificial event generation (e.g., Star-
Dust and Spotlight [21, 22]) are difficult to use in large-scale
road networks, since it is hard to generate artificial events in a
large area. Also, in the case where road networks are large, it is
very hard to let artificial events reach all sensors. Consequently,
it is difficult to apply these artificial event-based schemes to lo-
calization for sensor networks deployed on roadways.

The challenge in the localization on road networks is to use
the unique characteristics of road networks to cope with the lim-
itations of legacy localization schemes. There are challenges for
localization on road networks as follows:

• How can we use the vehicles moving only through road-
ways, as natural events for localization?

We observe that we can use vehicles moving on roadways as
natural events for localization; that is, when sensors on the road
detect moving vehicles, they regard vehicle detections as local-
ization events. One challenge is how to use the timestamps
of binary vehicle detection for localization [13], where binary
vehicle detection indicates only vehicle detection, without any
identification of the vehicle. If two sensors separated with some
spacing can identify detections of the same vehicle using costly
hardware for vehicle identification [16], it is easy to measure
the distance between these two sensors by the difference of the
timestamps corresponding to the vehicle from these two sen-
sors, given the vehicle’s speed. However, if we try to estimate
the distance between the sensors without such costly vehicle
identification hardware, such an estimation will be one chal-
lenge. The other challenge is how to use the fact that vehicles
move only through roadways. We observe that the roadways
can be regarded as the possible area where sensors can detect
moving vehicles. Consequently, we can use the road map of the
roadways around a target area as useful information for localiza-
tion in order to identify the possible locations of the sensors that
detect the moving vehicles. Thus, if with the vehicle-detection
timestamps and the road map we can identify which road seg-
ments sensors are placed on a road map, along with the relative
positions within the road segments, we can easily identify the
locations of sensors on roadways.

In this paper, we propose an Autonomous Passive Localiza-
tion (APL) based on the binary vehicle-detection timestamp and
the road map. Our localization scheme consists of three phases:
(a) the estimation of the distance between two arbitrary sensors
in the same road segment; (b) the construction of the connec-
tivity of sensors on roadways; (c) the identification of sensor
locations through matching the constructed connectivity of sen-
sors with the graph model for the road map.

Our contributions in this paper are as follows:

• A new architecture for autonomous passive localization in
road networks in Section 3.1. Simple sensors on roads au-
tonomously cooperate to localize their positions on road-

ways through the passive measurement of vehicle detec-
tion as a natural event.

• An estimation method for road segment distance among
two arbitrary sensors in Section 3.2. We propose a simple,
efficient estimation method, based on the difference of the
vehicle-detection timestamps of these two sensors.

• A prefiltering algorithm for selecting only road segment
distance estimates between two arbitrary sensors in the
same road segment in Section 3.3. In the case where two
arbitrary sensors are not in the same road segment and are
located far away from each other, the distance estimate
based on our estimation method might be inaccurate. The
prefiltering algorithm eliminates such a distance estimate
between two arbitrary sensors not in the same road seg-
ment.

• A graph-matching algorithm for matching the sensor’s
identification with a position at a graph model for the road
map of the target area in Section 3.4. We reduce our local-
ization problem to a traditional graph-matching problem,
then use an optimal graph-matching algorithm.

The rest of this paper is organized as follows. Section 2 de-
scribes the problem formulation for our localization. Section 3
explains the system design for Autonomous Passive Localiza-
tion. In Section 4, we discuss several considerations that affect
our localization scheme in reality. Section 5 shows the perfor-
mance evaluation of our algorithm. In Section 6, we explain
other related work. We summarize our work with our future
work in Section 7.

2 Problem Formulation
We consider a realistic model where sensors are placed at

both intersection points and non-intersection points on road net-
works. The objective is to localize wireless sensors deployed
in road networks only with a road map and binary vehicle-
detection timestamps taken by sensors placed at road intersec-
tion points, as shown in Figure 2(a).

2.1 Definitions and Assumptions
We define eight terms as follows:

Intersection Node Let Intersection Node be the sensor placed
at an intersection on the road and having more than two neigh-
boring sensors (i.e., degree ≥ 3). In Figure 2(a), sensors a and
c are intersection nodes.
Non-intersection Node Let Non-intersection Node be the sen-
sor placed at a non-intersection and having one or two neighbor-
ing sensors. In Figure 2(a), sensors b and d are non-intersection
nodes.
Virtual Topology Let Virtual Topology be Hv = (Vv,Mv),
where Vv = {s1,s2, ...,sn} is a set of sensors in the road network,
and Mv = [vi j] is a matrix of path length vi j for sensors si and
s j. Figure 2(b) shows a virtual topology of sensors to the road
network, shown in Figure 2(a). Mv is a complete simple graph,
since there is a path between two arbitrary sensors. We define
the edge of the virtual topology as virtual edge. In Figure 2(b),
among the virtual edges, a solid black line represents an edge
estimate between two sensors, which means that these two sen-
sors are adjacent on the road network. The dotted gray line
represents a path estimate between two sensors, which means
that these two sensors are not adjacent on the road network.
Virtual Graph Let Virtual Graph be Gv = (Vv,Ev), where Vv =
{s1,s2, ...,sn} is a set of sensors in the road network, and Ev =
[vi j] is a matrix of road segment length vi j between sensors si

2

Base Camp

a

b

c

d

(a) Road Network with Wireless Sensors

vH

1s
2s

3s

4s

5s

6s

7s

8s

9s
10s 11s

12s

13s

14s

15s

16s

17s

51s

Road Segment Path

(b) Virtual Topology of Wireless
Sensors: Tv = (Vv,Mv)

1s
2s

3s 4s

5s

6s
7s

8s

9s

10s
11s

12s 13s

14s
15s

16s

17s

18s

19s

20s

21s

22s 23s
24s

25s

26s 28s

29s
30s

31s

32s

33s

34s
35s

36s

37s
38s

39s

40s

27s
vG

41s

42s 43s

44s

45s

46s

47s
48s

49s

50s

51s

Intersection Node Non-Intersection Node

(c) Virtual Graph representing Sen-
sor Network: Gv = (Vv,Ev)

Base Camp

(d) Road Network only with Intersection
Nodes of Virtual Graph

1s

2s
3s 4s

6s
7s 8s

9s

10s
11s

12s
13s

14s
15s

16s

17s
18s

5s
vG

~

(e) Reduced Virtual Subgraph con-
sisting of Intersection Nodes of Vir-
tual Graph: G̃v = (Ṽv, Ẽv)

18p

17p
16p 15p

14p

13p
12p 11p

10p

9p
8p

7p
6p

5p
4p

3p

2p
1p

rG

(f) Real Graph corresponding to Vir-
tual Subgraph: Gr = (Vr,Er)

Figure 2. Wireless Sensor Network deployed in Road Network

and s j. Figure 2(c) shows a virtual graph of the sensor network
deployed on the road network shown in Figure 2(a), where the
black node represents an intersection node and the gray node
represents a non-intersection node.
Reduced Virtual Subgraph Let Reduced Virtual Subgraph be
G̃v = (Ṽv, Ẽv), where Ṽv = {s1,s2, ...,sm} is a set of sensors
placed at intersections in the road network, and Ẽv = [vi j] is a
matrix of road segment length vi j between intersection nodes si

and s j. The reduced virtual subgraph G̃v is obtained by deleting
the non-intersection nodes of the virtual graph Gv with the de-
gree information in Ev and by connecting two edges connected
to each non-intersection node when the non-intersection node
has degree 2. When the non-intersection node has degree 1, it is
deleted along with its edge. Refer to Section 3.4.1 for more de-
tailed procedure. Figure 2(e) shows a reduced virtual subgraph
consisting of only intersection nodes of virtual graph in Fig-
ure 2(c) and Figure 2(d) shows the road network representing
only intersection nodes.
Real Graph Let Real Graph be Gr = (Vr,Er), where Vr =
{p1, p2, ..., pn} is a set of intersections in the road network
around the target area, and Er = [ri j] is a matrix of road seg-
ment length ri j for intersections pi and p j. Figure 2(f) shows
a real graph corresponding to the road network shown in Fig-
ure 2(d), and the real graph is isomorphic to the reduced virtual
subgraph graph G̃v shown in Figure 2(e).
Shortest Path Matrix Let Shortest Path Matrix for graph G =
(V,E) be M such that M = [mi j] is a matrix of the shortest
path length between two arbitrary nodes i and j in graph G.
M is computed from E by the All-Pairs Shortest Paths algo-
rithm, such as the Floyd-Warshall algorithm [4]. In this pa-
per, we define Mr as the shortest path matrix for the real graph

Gr = (Vr,Er), and define Mv as the shortest path matrix for the
virtual graph Gv = (Vv,Ev).
APL Server Let APL Server be an ad-hoc server deployed in
the road network that performs the localization algorithm with
binary vehicle-detection timestamps collected from the sensor
network.

Our assumptions are as follows:

• Sensors have simple sensing devices for binary vehicle de-
tection without any costly ranging or GPS devices [6, 13].
Each detection consists of a sensor ID and timestamp, that
is, (si,t j) for i, j ∈N.

• Sensors are time-synchronized at a certain level (e.g., mil-
lisecond [ms]) [5, 12].

• The APL server has road map information for the target
area under surveillance and can construct a real graph con-
sisting of intersections in the road network.

• There is an ad-hoc network or a delay tolerant network for
wireless sensors to deliver vehicle-detection timestamps to
the APL server.

• The vehicle mean speed is close to speed limit assigned
to roadways. However, we deal with the situation that the
mean speed might shift from the speed limit according to
traffic condition.

• Vehicles pass through all road segments on the target road
networks and move at a certain level of speed change. That
is, the standard deviation of vehicle speed is assumed to be
a reasonable value, based on real road traffic statistics [14].

3

2.2 Main Idea
Suppose that one sensor is placed as intersection node at

a unique intersection point in the road network, as shown in
Figure 2(a). We construct a virtual topology, as shown in Fig-
ure 2(b), which has a distance estimate between two arbitrary
sensors in roadways with detection timestamps using the dis-
tance estimation method discussed in Section 3.2. The main
idea of the estimation method is based on an observation that
there is the correlation between vehicle-detection timestamps
from two adjacent sensors. This correlation gives a road seg-
ment length estimate. We found that in the virtual topology,
as shown in Figure 2(b), edge estimates for adjacent sensors in
the sensor network are accurate, which are represented as solid
black lines in Figure 2(b). However, most path estimates for
non-adjacent sensors are inaccurate, which are represented as
dotted gray lines in Figure 2(b).

In order to make the virtual topology become a graph corre-
sponding to the sensor network deployed on the road network,
as shown in Figure 2(c), we remove path estimates from the
virtual topology through the prefiltering algorithm described in
Section 3.3. The main idea of the prefiltering algorithm is that
path estimates have more variance than edge estimates, and path
estimates are the sum of edge estimates. The refined virtual
topology is called virtual graph, as shown in Figure 2(c), which
is the subgraph of the virtual topology only with the edge es-
timates. The virtual graph is not isomorphic to the real graph
of Figure 2(f) yet since the virtual graph has both intersection
nodes and non-intersection nodes, so it has more nodes and
edges than the real graph. However, the virtual graph contains
a subgraph isomorphic to the real graph. We need to find this
subgraph for the graph-matching with the real graph.

In order to find such a subgraph of the virtual graph isomor-
phic to the real graph, we remove the non-intersection nodes
and deal with their edges from the virtual graph in order to make
a reduced virtual subgraph only with intersection nodes corre-
sponding to intersection points in the road network, as shown
in Figure 2(e). At this point, the reduced virtual subgraph and
the real graph are isomorphic, so the reduced virtual subgraph’s
vertices can be matched with the real graph’s vertices by finding
a permutation matrix to let them be isomorphic. This graph-
matching for the permutation matrix belongs to a traditional
graph matching problem described in Section 3.4.

With the permutation matrix to let the reduced virtual sub-
graph and the real graph be isomorphic, we can identify the
location of each intersection node with the corresponding ver-
tex in the real graph. As shown in Figure 2(e) and Figure 2(f),
we can see that the real graph and virtual graph are isomorphic
since there is a bijection between the vertices of the real graph
and those of the virtual graph. For example, sensors s1 and s2

are matched with intersections p18 and p17, respectively. Af-
ter the localization of intersection nodes, we localize the non-
intersection nodes using the the observation that they are always
placed between two intersection nodes in the virtual graph, as
shown in Figure 2(c). The detailed procedure of node-location
identification is discussed in Section 3.5.

3 APL System Design
In this section, we explain our system architecture for au-

tonomous passive localization, the estimation method to mea-
sure distance between two arbitrary sensors, the prefiltering al-
gorithm to convert a virtual topology into a virtual graph, the
graph-matching algorithm to find a permutation matrix letting
the reduced virtual subgraph and real graph be isomorphic, and

Prefiltering

APL Server

Sensor Node is

Traffic Analysis

Node Location

Notification
Vehicle

Detection

Repository

kt

),(ii Ts

),(ii ls

vH

),(Ts

),(ls

P

Vehicle

Detection

Timestamps

Graph Matching

Location

Identification

P

vG

1

2

3

4

5 6vG
~

Figure 3. APL System Architecture

sensor location identification using the found permutation ma-
trix.

3.1 System Architecture
We use an asymmetric architecture for localization as in Fig-

ure 3 in order to simplify the functionality of sensors for lo-
calization. As simple devices, sensor nodes only monitor road
traffic and register vehicle-detection timestamps in their local
repositories. An ad-hoc server called the APL server processes
the complex computation for localization.

The localization procedure consists of the following phases:

• Step 1: After road traffic measurement, sensor si sends the
APL server its vehicle detection timestamps, along with
its sensor ID, i.e., (si,Ti), where si is the sensor ID and
Ti is the timestamps. The APL server collects road traf-
fic measurement data comprised of sensor ID vector s and
corresponding timestamps T from the sensor network.

• Step 2: The traffic analysis module estimates the length of
the road segment between two arbitrary sensors and con-
structs a virtual topology Hv = (Vv,Mv), where Vv is the
vertex set of the sensor IDs, and Mv is the matrix contain-
ing the distance estimate between two arbitrary sensors.

• Step 3: The prefiltering module converts the virtual topol-
ogy Hv into a virtual graph Gv = (Vv,Ev), where Vv is the
vertex set of the sensor IDs, and Ev is the adjacency matrix
of the estimated road segment lengths.

• Step 4: The graph-matching module constructs a reduced
virtual subgraph G̃v = (Ṽv, Ẽv) from the virtual graph Gv,
where Ṽv is a set of intersection nodes among Vv, and Ẽv

is a set of edges whose endpoints both belong to Ṽv. G̃v

is isomorphic to the real graph Gr = (Vr,Er). Then the
graph-matching module computes a permutation matrix P,
making the reduced virtual subgraph G̃v = (Ṽv, Ẽv) be iso-
morphic to the real graph Gr = (Vr,Er).

• Step 5: The location identification module determines
each sensor’s location on the road map along with matrix
P, the virtual graph Gv, the reduced virtual subgraph G̃v

and the real graph Gr. It creates node location information
(s, l), where s is the sensor ID vector, and l is the corre-
sponding location vector, that is, li = (xi,yi), where i is the
sensor ID, xi is the x-coordinate, and yi is the y-coordinate
in the road map.

• Step 6: With (s, l), the APL server sends each sensor si its
location with a message (si, li).

4

t

1S

t

3S

t

2S

1,1t 2,1t 3,1t 4,1t 5,1t 6,1t

1,2t
2,2t 3,2t 4,2t 5,2t 6,2t

2,7t 3,7t 6,7t 8,7t 10,7t 12,7t

1,7t 4,7t 5,7t 7,7t 9,7t 11,7t

0

0

0

Figure 4. Detection Sequence for Vehicles at Sensors s1, s3,
and s2

4,1t t

1S

1,1t 2,1t 3,1t 5,1t 6,1t0

t

2S

2,2t 3,2t 6,2t 8,2t
10,2t 12,2t

1,2t 4,2t 5,2t 7,2t 9,2t 11,2t
0

(a) Time Difference between Timestamps t1,1 and
t2,i

4,1t t

1S

1,1t 2,1t 3,1t 5,1t 6,1t0

t

2S

2,2t 3,2t 6,2t 8,2t
10,2t 12,2t

1,2t 4,2t 5,2t 7,2t 9,2t 11,2t
0

(b) Time Difference between Timestamps t1,2 and
t2,i

Figure 5. Time Difference Operation for Sensors s1 and s2

3.2 Step 2: Traffic Analysis for Road Segment
Length Estimation

In order to estimate road segment lengths, we found a key
fact that vehicle arrival patterns in one sensor are statistically
maintained at neighboring sensors close to the sensor. This
means that the more closely the two sensors are located, the
more correlated the vehicle arrival timestamps are. Conse-
quently, we can estimate road segment length with estimated
movement time between two adjacent sensors using the corre-
lation of the timestamp sets of these two sensors, along with the
vehicle mean speed (i.e., speed limit given on the road segment).

Through both outdoor test and simulation based SMPL [11],
we found that we can estimate the lengths of road segments used
by vehicles during their travels on roadways only with vehicle-
detection timestamps, given the vehicle mean speed. The time
difference operation for timestamp sets Ti and Tj from two sen-
sors si and s j is defined as follows:

d
i j
hk = |tih− t jk| (1)

where tih ∈ Ti for h = 1, ..., |Ti| is the h-th timestamp of sensor
si and t jk ∈ Tk for k = 1, ..., |Tj| is the k-th timestamp of sensor
s j. We define a quantized time difference operation as follows:

d̂
i j

hk = g(d
i j

hk) (2)

where g is a quantization function to map the real value of d
i j

hk

A

B C

D

900 [m]

8
0

0
 [

m
]

Figure 6. Road Networks for Outdoor Test

to the discrete value in order to compute the frequency (i.e.,
vehicle detection count) per time difference value. The interval
between two adjacent quantization levels is defined according
to the granularity of the time difference, such as 1 second, 0.1
second or 1 millisecond. The number m of quantization levels
(i.e., qk for k = 1, ...,m) is determined considering the expected
movement time of vehicles in the longest road segment of the
relevant road network.

After the time difference operation for two timestamp sets
from two sensors, the quantization level with the highest fre-

quency (i.e., d̂i j) is regarded as the movement time of vehicles
for the roadway between these two sensors si and s j as follows:

d̂i j← arg max
qk

f (qk) (3)

where f is the frequency of quantization level qk for k = 1, ...,m.
The movement time on the road segment can be converted into
road segment length using the formula l = vt, where l is the road
segment’s length, v is the vehicle mean speed, and t is the ve-
hicle mean movement time on the road segment. For example,
Figure 4 shows the detection sequence for vehicles at intersec-
tion nodes s1, s2, and s3 in Figure 2(c), where s2 is a common
neighbor of s1 and s3. Figure 5 shows the time difference oper-
ation for nodes s1 and s2 that is a kind of Cartesian product for
two timestamp sets. For example, Figure 4 shows the detection
sequence for vehicles at intersection nodes s1, s2, and s3 in Fig-
ure 2(c), where s2 is a common neighbor of s1 and s3. Figure 5
shows the time difference operation for nodes s1 and s2 that is a
kind of Cartesian product for two timestamp sets.

We performed outdoor test to verify whether our time differ-
ence operation can give good estimates for road segment lengths
in terms of vehicle movement time. The results of outdoor test
indicate that our time difference operation can give reasonable
road segment length indicators. Figure 6 shows the road map
of local roadways for outdoor test. The test roadways consist
of four intersections A, B, C, and D. Road segments AB and
CD have the length of about 800[m] and road segments BC and
DA have the length of about 900[m]. Speed limit on these road
segments is 64[km/h] (or 40[mph]). We performed vehicle de-
tection manually for more accurate observation; Note that it is
hard to get accurate vehicle detections at intersections with the
current motes due to the sensor capability and mote’s physi-
cal size, so the development of the vehicle detection algorithm
is our future work. We registered timestamps for vehicle de-
tection for 15 minutes whenever vehicles passed through the
center point of the intersection. The numbers of vehicle detec-

5

0 50 100 150 200 250 300 350 400 450 500
100

150

200

250

300

350

400

Time Difference [sec]

F
re

q
u
e
n
c
y

(a) Time Difference for Intersec-
tions A and B

0 50 100 150 200 250 300 350 400 450 500
300

400

500

600

700

800

900

1000

Time Difference [sec]

F
re

q
u

e
n

c
y

(b) Time Difference for Intersec-
tions B and C

0 50 100 150 200 250 300 350 400 450 500
100

150

200

250

300

350

400

Time Difference [sec]

F
re

q
u
e
n
c
y

(c) Time Difference for Intersec-
tions C and D

0 50 100 150 200 250 300 350 400 450 500
50

100

150

200

Time Difference [sec]

F
re

q
u
e
n
c
y

(d) Time Difference for Intersec-
tions D and A

Figure 7. Outdoor Test Results in Real Road Networks

Table 1. Outdoor Test Results
Expected Measured

Road Segment Distance Movement Movement

Time Time

A and B 800 [m] 45[sec] 43[sec]

C and D 800 [m] 45[sec] 43[sec]

B and C 900 [m] 51[sec] 54[sec]

D and A 900 [m] 51[sec] 56[sec]

tion at intersections A, B, C, and D are 89, 208, 195, and 92,
respectively. Figure 7 shows the vehicle movement times with
the highest frequency for four road segments. Clearly, we can
see the dominant peaks indicating that their time differences are
the vehicle movement times. Table 1 shows the expected move-
ment times and measured movement times for these four road
segments. We can see that the estimated movement times are
close to the expected movement times. Through outdoor test,
we found that our estimation method works well even under
heterogenous traffic density (i.e., traffic density order for inter-
sections: B > C > D > A) during a short time (i.e., 15-minute
measurement). Thus, we can estimate vehicle movement time
on each road segment through the timestamps and time dif-
ference operation, which can be converted into road segment
length with speed limit.

Consequently, with the time difference, we can make a vir-
tual topology, as shown in Figure 2(b), containing the distance
between two arbitrary nodes. We call this estimated distance in
the virtual topology as virtual edge. Since we do not know the
exact connectivity among sensors in the virtual topology at this
point, we cannot identify which distances indicate the sensor
network’s edges that represent road segments between sensors.
Through both outdoor test and simulation, we found that in vir-
tual graph there is a large error in the virtual edge between two
arbitrary nodes corresponding to a path in the virtual topology.
On the other hand, there is a very small error in the edge be-
tween two arbitrary nodes that is an edge in the virtual topology.
We explain how to deal with these errors in Section 3.3.

0 5 10 15 20 25 30
0

2

4

6

8

10

Non−aggregation Method

Time Difference [sec]

F
re

q
u

e
n

c
y

0 5 10 15 20 25 30
10

20

30

40

50

60

70

80

Aggregation Method

Time Difference [sec]

F
re

q
u

e
n

c
y

Figure 8. Comparison between Non-aggregation Method
and Aggregation Method

3.2.1 Enhancement of the Road Segment Length Estima-
tion

We found that an estimate close to real road segment length
cannot always be obtained by the maximum frequency through
the time difference operation discussed previously. The reason
is that there are some noisy estimates with higher frequencies
than an expected good estimate. In order to resolve this prob-
lem, we introduce an aggregation method where the mean of
several adjacent time differences become a new time difference
value, and the sum of frequencies of those is the corresponding
frequency. This is based on an observation that time differences
close to a real time difference (i.e., movement time needed by
a vehicle with the vehicle mean speed on a road segment) have
relatively high frequencies in terms of the count of the corre-
sponding time difference obtained by the time difference oper-
ation for two timestamp series, as shown in Figure 5. On the
other hand, we observe that a noisy estimate with the highest
frequency occurs randomly, and its neighbor estimates have rel-
atively low frequencies. We call this method based on time dif-
ference aggregation as the Aggregation Method and call the pre-
vious simple time difference as the Non-aggregation Method.

We determine the aggregation window size with the standard
deviation σv of the vehicle speed. The current formula for the
aggregation window size ∆ is as follows:

∆← σvw, (4)

where σv is the standard deviation of the vehicle speed (e.g., 5
[km/h]), and w is the window size factor (e.g., 5). Starting from
the time difference value of zero, we choose a representative of
the adjacent time difference values within the optimal aggrega-
tion window size as the mean of them, and sum their frequencies
into the representative’s frequency. We then move the window
to the right by the unit of time difference value and repeat the
computation of the representative and frequency. For example,
we show this phenomenon using our simulation for the road
network, as shown in Figure 2. Figure 8 shows the comparison
between the non-aggregation method and aggregation method.
We found that for the road segment between sensors s2 and s3

whose time difference is 9.36[sec], the non-aggregation method

6

1s

2s

20s

3s 4s

22s

5s

19s

(a) Road Network with
the Following Sensors:
{s1,s2,s3,s4,s5,s19,s20,s22}

1s

2s

3s

4s

5s
19s

20s

22s

(b) Virtual Topology for
the Following Sensors:
{s1,s2,s3,s4,s5,s19,s20,s22}

1s

2s

3s

4s

5s
19s

20s

22s

(c) Virtual Graph after
Prefiltering based on the
Relative Deviation Error

1s

2s

3s

4s

5s
19s

20s

22s

(d) Virtual Graph af-
ter Prefiltering based on
the Minimum Spanning
Tree

Figure 9. Procedure of Prefiltering for obtaining Virtual Graph

makes a wrong estimate (i.e., 26.8[sec]), but the aggregation
method makes a correct estimate (i.e., 9.3[sec]). Thus, we use
this aggregation method to obtain good estimates for road seg-
ment lengths in virtual topology.

3.3 Step 3: Prefiltering Algorithm for a Virtual
Graph

We observe that the time difference operation discussed in
Section3.2 gives large errors in path estimates between two ar-
bitrary sensors in virtual topology. The reason is that when two
sensors are separated far from each other, the correlation be-
tween the two timestamp sets from them is reversely propor-
tional to the distance between the two sensors. On the other
hand, the edge estimates (i.e., estimates for road segments) pro-
duced by the time difference operation are much more accu-
rate. From this observation, we filter out all inaccurate path
estimates from the virtual topology, except for edge estimates
so that the virtual topology is converted into a virtual graph.
However, there still remain accurate path estimates of two sen-
sors separated from each other by approximately two or three
road segments. We can filter out the accurate path estimates us-
ing the fact that the shortest estimate should usually be an edge
estimate, and a path estimate consists of such edges. Thus, our
prefiltering algorithm consists of two prefilterings:

1. Prefiltering based on the Relative Deviation Error and

2. Prefiltering based on the Minimum Spanning Tree.
We explain the prefiltering procedure and the effect of

two prefilterings on virtual topology using Figure 9. As
shown in Figure 9(a), there is a partial road network of
the entire one shown in Figure 2(a) containing sensors
{s1,s2,s3,s4,s5,s19,s20,s22}. In virtual topology, two arbitrary
sensors among them have a distance estimate, as shown in Fig-
ure 9(b). Using prefiltering based on the relative deviation error,
we remove the virtual topology’s edges corresponding to inac-
curate path estimates, and we then construct a virtual graph,
shown in Figure 9(c). Next we apply prefiltering based on the
minimum spanning tree to the virtual graph, so the virtual graph
containing only the edge estimates is constructed by removing
accurate path estimates, as shown in Figure 9(d). In this section,
we explain the idea of these two prefilterings for obtaining the
virtual graph Gv = (Vv,Ev) from virtual topology Hv = (Vv,Mv)
in detail.

3.3.1 Prefiltering based on the Relative Deviation Error
Large errors in path estimates will significantly affect our fu-

ture steps. An example is as follows: We know that the smallest
entry in Mv must be an edge when no large error occurs, since
path lengths are always the sum of several edge lengths. How-
ever, when there are large errors in Mv, the perturbed data can

be any value regardless of what the accurate estimate value is
for the entry in Mv. In this case, we will no longer regard the
smallest entry as an edge estimate rather than a path estimate
perturbed by a large error. As a result, it is very important to
filter out all the entries that have large errors, regarding them as
path estimates.

We define Relative Deviation (φ) as the ratio of the standard
deviation (σ) to the mean (µ), that is, φ = σ/µ. To compute both
the mean and the standard deviation of each entry in Mv, We use
multiple estimation matrices of Mv per measurement time with
the same duration. In order to compute the relative deviations of
the estimates, we divide the vehicle-detection timestamps into
time windows (e.g., every one hour) and perform the time dif-
ference operation for the timestamps of two arbitrary sensors
within the same time window. We then compute the relative de-
viations of the virtual edge estimates for each pair of sensors. If
the relative deviation is greater than a certain threshold ε (e.g.,
ε = 5%), the corresponding entry is regarded as a path estimate,
and it is replaced with ∞, indicating that this entry is a path
estimate.

3.3.2 Prefiltering based on the Minimum Spanning Tree
Suppose that there are n sensors in the virtual topology. Let

Mv be the n× n adjacency matrix of the virtual topology. Pre-
filtering based on the Minimum Spanning Tree consists of the
following two steps:

1. Finding of the First n-1 Edges of the Virtual Graph and

2. Finding of All of the Other Edges of the Virtual Graph.
First, we select n-1 edges from Mv that make a Minimum

Spanning Tree (MST) for the virtual topology by using a Mini-
mum Spanning Tree algorithm, such as Prim algorithm [4]. The
n−1 edges that form the MST are definitely edge estimates. Let
Mv(u,v) be the entry of matrix Mv where u is the row index and
v is the column index. A brief proof is as follows:

1. The smallest entry must be an edge because the path length
is the sum of several edge lengths.

2. Suppose we have found m edges, where 1 ≤ m < n− 1.
Let N be a set of the corresponding nodes of the m edges.
We then choose the smallest entry Mv(u,v) that satisfies
u /∈ N, and v ∈ N. Mv(u,v) must be an edge. If Mv(u,v)
is not an edge, there must exist another node q such that
Mv(u,v) = Mv(u,q)+ Mv(q,v). If q ∈ N, then Mv(u,q) <
Mv(u,v), which contradicts our assumption that Mv(u,v)
is the smallest entry. If q /∈ N, then Mv(q,v) < Mv(u,v),
and it also contradicts our assumption that Mv(u,v) is the
smallest.

Second, in order to find all of the other edges of the virtual
graph Gv = (Vv,Ev), as shown in Figure 2(c), with n− 1 edges

7

a b c d e

f g

j k l m n

h i

(a) Virtual Graph: Intersec-
tion Node Set={b,d,k,m}
and Non-intersection Node
Set={a,c,e,f,g,h,i,j,l,n}

b c d

f g

k l m

h i

(b) Deletion of
Non-intersection
Nodes {a,e,j,n}
with degree 1

b c d

k l m

h i

(c) Deletion of
Non-intersection
Nodes {f,g} with
degree 2

b d

k m

(d) Deletion
of Non-
intersection
Nodes
{c,h,i,l}
with degree 2

Figure 10. Construction of the Reduced Virtual Subgraph

obtained by the previous step, we compute the shortest paths
between all pairs of nodes and create a new matrix M′v. We
use the fact that M′v(i, j)≥Mv(i, j) because for an arbitrary pair
of nodes i and j, M′v(i, j) is the shortest path created only by
n−1 edges, while Mv(i, j) is created from more edges; that is,
Mv(i, j) might be shorter than M′v(i, j). It is proven from Theo-
rem A.1 in Appendix A that Mv(i, j) must be an edge estimate if
it is the smallest one among all of the entries in Mv that satisfies
Mv(i, j) < M′v(i, j), since there is no entry with large error after
the previous filtering. Consequently, Mv(i, j) is the n-th edge
estimate we found. We update the set of edges by adding this
new edge, and we also update the matrix M′v using the new set.
We repeat this process until M′v and Mv are exactly the same. In
this way, we can find out all of the other edge estimates of Ev

from Mv.

3.4 Step 4: Graph Matching
In this section, we explain how to construct a reduced virtual

subgraph from the virtual graph, and then how to match the
reduced virtual subgraph and real graph that are isomorphic to
each other.

3.4.1 Construction of the Reduced Virtual Subgraph

In order to perform isomorphic graph matching, two graphs
should be isomorphic. Since the virtual graph Gv returned from
the prefiltering module has more vertices and edges than the
real graph Gr, we cannot perform isomorphic graph matching
directly. We observe that every intersection node in the vir-
tual graph, as shown in Figure 2(c), has a degree greater than
2, since each intersection on the road are connected to at least
3 road segments, so each intersection node has at least three
neighboring sensors. With this observation, we make a reduced
virtual subgraph from the virtual graph as follows:
Let Gv = (Vv,Ev) be a virtual graph. Let N be a set of non-
intersection nodes of Gv. Let dGv(u) be the degree of u in the
graph Gv. Let euv be the edge whose endpoints are u and v for
u,v ∈Vv. Let l(e) be the length of the edge e ∈ Ev. We perform
the following for all u ∈ N:

• If dGv(u) = 1, then delete u from Gv and delete an edge
whose one endpoint is u from Gv.

• If dGv(u) = 2, then delete u from Gv, merge the two edges
eux and euy, whose one endpoint is u, into one edge exy.
The length of the edge exy is set to l(eux)+ l(euy).

For example, Figure 10 shows the construction of a reduced
virtual subgraph from a virtual graph in which a set of intersec-
tion nodes is {b,d,k,m} and a set of non-intersection nodes is
{a,c,e,f,g,h,i,j,l,n}. After removing non-intersection nodes and

dealing with the corresponding edges, the final reduced virtual
subgraph consists of four intersection nodes b, d, k, and m.

We should note that Theorem A.1 is based on the assumption
that if there is an edge between two intersection nodes in a real
graph, it must correspond to the shortest path in the shortest
path matrix Mr of the real graph. That is, Er(i, j) = Mr(i, j).
However, it is not always the case in the real world. In the case
where for nodes pi and p j, there exists a path between nodes
pi and p j shorter than an edge of the nodes pi and p j, that is,

Er(i, j) > Mr(i, j), our algorithm sets Ẽv(i, j) to 0, which means
that there is no edge between nodes pi and p j. At this time, Er

and Ẽv are no longer isomorphic to each other. We need to deal
with this situation in the following two approaches:

1. Approach 1: Before applying the graph matching algo-
rithm to Er and Ẽv, we modify Er as follows. We can com-
pare all of the entries in Er and Mr and set Er(i, j) = 0 if
Er(i, j) > Mr(i, j).

2. Approach 2: We use Ẽv to generate another all-pair short-
est paths matrix M̃v. Unlike Mv obtained from the mea-
surement, M̃v is accurate and isomorphic to Mr. As a re-
sult, we can use M̃v and Mr instead of Ẽv and Er in the
graph matching algorithm.

3.4.2 Weighted Graph Matching
Since the reduced virtual subgraph’s Ẽv and the real graph’s

Er are isomorphic, our graph matching can be defined as search-
ing for the n×n permutation matrix P to satisfy the following,
in which P is the row permutation matrix, and PT is the column
permutation matrix:

Φ(P) = ‖Er−PẼvPT‖2
2 (5)

P← arg min
P̂

Φ(P̂) (6)

Êv← PẼvPT (7)

Let P be an n×n optimal permutation matrix of Eq. 6 in terms
of the minimum estimation error. The result Êv of Eq. 7 is a
matrix isomorphic to Er where indices in both matrices indi-
cate the node identifications; that is, the sensor ID in Ẽv corre-
sponds to the intersection ID in Er for i = 1, ...,n. This opti-
mization problem is called the Weighted Graph Matching Prob-
lem (WGMP). In order to get the exact solution P, allowing for
the global minimum of Φ(P), all of the possible cases should
be checked. Since this is a purely combinatorial problem, the
algorithm based on a combination has the time complexity of
O(n!) for n nodes. Consequently, this is an unfeasible approach

8

in reality. We need to use approximate approaches to give an
accurate permutation matrix P, such as an eigendecomposition
approach to WGMP [24], known as an optimal approach. For
our graph matching purpose, we adopt the eigendecomposition
approach that has polynomial time complexity.

3.4.3 Effect of the Real Vehicle Mean Speed different
from the Speed Limit on Roadways

The road traffic condition is changed according to time zone,
such as rush hour and night. This might affect the vehicle mean
speed. Thus, we investigate how the changed vehicle mean
speed affects our localization scheme in this section.

Assume that the vehicle mean speed in each road segment
is uniformly scaled up or down according to traffic condition.
We found that the the graph matching described in Section 3.4.2
is not affected, even in the case in which vehicles have the
mean speed from our assumed vehicle mean speed of the limited
speed on roadways. This limited speed is used in the computa-
tion of the adjacency matrix Er of the real graph Gr = (Vr,Er).
The reason is that the different mean speed does not affect the
eigenvectors of matrices Er and Ẽv used for computing the per-
mutation matrix P in the eigendecomposition approach [24].
Consequently, the permutation matrix P does not change due
to the scalar multiplication for Er or Ẽv, which means that there
is no problem in the case in which the mean speed used in ma-
trix Er is different from that used in matrix Ẽv. This argument
can formally be proved as follows:
THEOREM 3.1. Let P, Er and Ẽv be n× n real matrices. If P
is an n× n optimal permutation that minimizes the following
2-norm square

P = arg min
P̂
‖Er−PÊvPT‖2

2, (8)

then P is also an n× n optimal permutation that minimizes the
following 2-norm square

P = arg min
P̂
‖Er−PcÊvP

T‖2
2,∀c ∈R

+. (9)

PROOF. Let Er = (ri j) and Ẽv = (vi j) for 1 ≤ i, j ≤ n. Let the
permutation function σ(x) be a map corresponding to the opti-
mal permutation matrix P

σ : x ∈ {1, ...,n}→ y ∈ {1, ...,n}, (10)

that is, y = σ(x). Thus, the 2-norm square in Eq. 8 can be rep-
resented using the summation and permutation function as fol-
lows:

Φ(P,Er, Êv) = ‖Er−PÊvPT‖2
2 =

n

∑
i=1

n

∑
j=1

(ri j− vσ(i)σ(j))
2. (11)

Also, the 2-norm square in Eq. 9 can be represented as follows:

Φ(P,Er,cÊv) = ‖Er−PcÊvPT‖2
2 =

n

∑
i=1

n

∑
j=1

(ri j− cvσ(i)σ(j))
2.

(12)

Let σ̄(x) be the arbitrary permutation function corresponding
to an arbitrary permutation matrix P̄. Since P is an optimal

permutation, the following inequality always holds:

Φ(P,Er, Êv)−Φ(P̄,Er, Êv)≤ 0,

⇒
n

∑
i=1

n

∑
j=1

(ri j− vσ(i)σ(j))
2−

n

∑
i=1

n

∑
j=1

(ri j− vσ̄(i)σ̄(j))
2 ≤ 0,

⇒
n

∑
i=1

n

∑
j=1

(−2ri jvσ(i)σ(j) + 2ri jvσ̄(i)σ̄(j))≤ 0. (13)

In the same way, from Eq. 12, if we take the difference between
two 2-norm squares for P and P̄, then P is also an optimal per-
mutation matrix of Eq. 12 due to Eq. 13 as follows:

Φ(P,Er,cÊv)−Φ(P̄,Er,cÊv) =

∑n
i, j(ri j− cvσ(i)σ(j))

2−∑n
i, j(ri j− cvσ̄(i)σ̄(j))

2 =
c∑n

i, j(−2ri jvσ(i)σ(j) + 2ri jvσ̄(i)σ̄(j))≤ 0, ∀c ∈R
+.

(14)

From Theorem 3.1, as long as all of the road segments have the
same constant scaling factor c for their mean speeds, our lo-
calization algorithm works well regardless of the distribution of
the vehicle mean speed during traffic measurement. In the case
where each road segment has a different scaling factor accord-
ing to traffic condition, our algorithm does not work. However,
under a light road traffic condition, such as night, we expect that
all of the road segments tend to have the same constant scaling
factor c for their mean speeds. Thus, our algorithm can be per-
formed during the light road traffic condition.

3.5 Step 5: Node Location Identification
In this section, we explain how to identify the location of

each intersection node, and then how to identify the location of
each non-intersection node.

3.5.1 Localization of Intersection Nodes
We perform the identification of each intersection node’s lo-

cation with the permutation matrix P returned from the graph-
matching module. Let the permutation function σ(s) be a map
corresponding to the permutation matrix P

σ : s ∈ {1, ...,n}→ p ∈ {1, ...,n}, (15)

that is, p = σ(s) where s is the sensor ID and p is the intersection
ID.

Let (xsi
,ysi

) be the coordinate of sensor si. Let loc(σ(si)) be
the location function that returns the coordinate (xsi

,ysi
) corre-

sponding to the index σ(si). Thus, the location identification of
node si is performed as follows:

[xsi
,ysi

]← loc(σ(si)) (16)

3.5.2 Localization of Non-intersection Nodes
In the previous section, we know the positions of the in-

tersection nodes. Now we localize the positions of the non-
intersection nodes. Using Ev, we begin from an intersection
node u, and we create a path from u to another intersection node
v, that is, u→ a1→ a2→ ··· → am→ v. All ai for i = 1, ...,m
are non-intersection nodes whose degrees are 2. Since we have
already localized nodes u and v, and all of these ai must be
placed on the edge from u to v on the reduced virtual subgraph,
as shown Figure 2(d), we can know the positions of these ai by
looking at the length information in Ev of the virtual graph, as
shown in Figure 2(c). We repeat this procedure until we localize
all of the non-intersection nodes in the virtual graph.

9

4 Discussions
We discuss several considerations for the deployment of our

localization scheme in real road networks and suggest two opti-
mizations for traffic analysis in order to get more accurate edge
estimates in the virtual topology and to reduce the traffic mea-
surement time.

4.1 Sensor Time Synchronization Error
The inaccuracy of the timestamps should be considered, due

to time synchronization errors among sensors. That is, sensor
nodes might have different times at a certain level (e.g., mil-
lisecond). Let τ be the exact time. Let τi be the time of sensor
si such that τi = τ + εi and εi is a uniform random variable in
the interval [−εmax,εmax]. If the time error is small, such as c
milliseconds in which c is a small constant, then the road seg-
ment length estimation through the time difference will not be
affected so much. For example, suppose that the average vehicle
speed is v, and some road segment’s length is l. In the case of
perfect time synchronization, our time difference scheme will
estimate the movement time t in the road segment in which
t ≈ l/v. In the case where two adjacent sensors have time errors
−εmax and εmax, respectively, the estimated movement time t̂
will be approximately t + 2εmax. Consequently, if εmax is small,
then the movement time t̂ will be close to t.

4.2 Intersection Node Missing
Our prefiltering and graph matching algorithm works well

when there are some non-intersection nodes missing or out of
function. This is because our algorithm is based on intersec-
tion nodes. However, when there is the missing of intersection
nodes, the reduced virtual subgraph will no longer be isomor-
phic to the real graph and so the graph matching algorithm will
not work. As a result, we need to find out the missing inter-
section nodes and add them to the reduced virtual subgraph to
make it isomorphic to the real graph.

Assume that every road segment has at least one non-
intersection node. This assumption makes sense, since road
segments are normally longer than intersections, so sensors can
be placed on road segments with high probability by the ran-
dom deployment based on unmanned aerial vehicles. The basic
idea to find out a missing intersection node is as follows: With
the degree information in Ev, delete all of the edges incident to
nodes whose degrees are one or two. If all of the nodes become
isolated in the graph, there is no missing of intersection nodes.
Otherwise, there is missing of intersection nodes.

For example, as shown in Figure 2(c), we focus on the in-
tersection where node s9 is placed. If s9 is not missing, our
prefiltering algorithm in Step 3 of Section 3.1 will make a ma-
trix Ev containing edges e9,28, e9,46, e9,29, and e9,30. For the
intersection related to s9, we can see that all of the edges of
{e9,28,e9,46,e9,29,e9,30} can be deleted from Ev by our algo-
rithm above. However, if s9 is missing, the prefiltering algo-
rithm will make a matrix Ev including a complete subgraph
consisting of four nodes of {s28,s29,s30,s46} that are adja-
cent to s9. By our algorithm above, the subgraph’s six edges
of {e28,46,e28,29,e28,30,e29,46,e29,30,e30,46} cannot be deleted,
since there is no non-intersection node between any pair of these
four nodes. As a result, we can find out the missing intersection
node s9 among these four nodes. Since the edge lengths related
to s9 can be easily solved from Ev, we can add s9 to the virtual
graph. In this way, after we find out all the missing intersection
nodes, the reduced virtual graph will be isomorphic to the real
graph.

4.3 Vehicle Detection Missing and Duplicate Ve-
hicle Detection

There might be vehicle detection missing or duplicate vehi-
cle detection due to some noises. Since our algorithm uses many
vehicle detection timestamps, the missing of some vehicle de-
tections does not affect the road segment length estimation. We
investigated the effect of the detection missing for the whole lo-
calization accuracy through simulation by modeling the detec-
tion event as a Bernoulli trial. The result is that our localization
scheme has no localization error under the simulation setting in
Section 5 with the detection missing probability from 0 to 0.2 at
each sensor.

Also, we investigated what effect the duplicate detection has
for the whole localization accuracy through simulation by mod-
eling the duplicate detection event as a Bernoulli trial. The
result is that our localization scheme has no localization error
under the simulation setting in Section 5 with the duplicate de-
tection probability from 0.1 to 1 at each sensor. This means
that the duplicate vehicle detection has positive effect, since the
duplicate vehicle detection can contribute more to the detection
frequency corresponding to the right road segment estimate.

4.4 Matching Ambiguity due to Topology Sym-
metricity

In certain cases, some subgraphs in a real graph might have a
symmetric topology. Since our graph matching cannot localize
sensors correctly, due to the topology symmetricity, we need
anchor nodes that are sensors with GPS receivers. We need
to determine whether we can localize sensors uniquely by test-
ing the conditions for unique localizability discussed in [1]. If
there is a topology symmetricity in the road network, we need
to find out a minimum number of anchor nodes and the places to
remove the ambiguity for graph matching before applying our
localization scheme to the road network.

4.5 Subgraph Matching in the case of Sensor
Death or Intersection Node Missing

Wireless sensors can die due to some reasons, such as energy
exhaustion and breakdown. There may be missing intersection
nodes, due to the random deployment from the airplanes in the
sky. This means that we cannot get the reduced virtual sub-
graph’s adjacency matrix isomorphic to the real graph’s adja-
cency matrix. In this case, we can try to use subgraph match-
ing [10], since the reduced virtual subgraph is isomorphic to a
subgraph of the real graph. That is, the intersection nodes of the
reduced virtual subgraph are matched with the corresponding
intersection points of the real graph through a subgraph match-
ing.

4.6 Optimal Time-Difference Window Size for
Time Difference Operation

We define the time-difference window size as the time dura-
tion for the time difference operation of vehicle-detection times-
tamps in order to obtain a virtual topology. The time duration
for the time difference operation is required to be long enough
to obtain a virtual topology that has accurate edge estimates. If
the time-difference window is longer, it will give a more accu-
rate virtual topology, but it will require more computation time.
Thus, we need to determine an optimal time-difference window
size for the time operation in terms of the computation cost and
the accuracy of the virtual topology.

With an optimal time-difference window size, we divide the
timestamps into the multiple sets in order to compute the mean

10

and deviation of edge estimates in the virtual topology as dis-
cussed in Section 3.3.1. For the computation of the mean and
deviation, we need to consider how many the timestamp sets
are appropriate for the accurate prefiltering based on the rela-
tive deviation error. Consequently, the time-difference window
size and the number of timestamp sets will determine the traffic
measurement time. In our simulation, we divide the timestamps
into multiple sets per hour, and compute the mean and deviation
of edge estimates.

4.7 Other Issues
There are other issues to study as future work as follows:

• The case in which an exact real graph for intersection
nodes is unknown: In reality, it is not easy to construct
a real graph in the scenario of aerial sensor deployment.
Otherwise, we need to perform subgraph matching [10]
between the reduced virtual subgraph and the real graph,
since the real graph should be a supergraph for the reduced
virtual subgraph.

• The scenario in which multiple sensors are placed at each
intersection point in the roadways: We need to select one
of the multiple sensors at the same intersection point as
representative for localization. We can regard these sen-
sors as belonging to one intersection point if they have
similar road segment estimates for the other sensors, ex-
cept for them.

• Detection of Outlier Sensors in Timestamping: Times-
tamps may be totally wrong due either to sensor malfunc-
tion or a security attack. We need to filter out the times-
tamps of such sensors in order to perform exact localiza-
tion.

• Localization for Large-scale Road Networks: For large-
scale road networks, it is difficult to compute a large ma-
trix in one APL server, so we need to divide the road net-
work into doable areas for localization with multiple APL
servers in terms of localization accuracy and computation
complexity. We can consider a kind of divide-and-conquer
approach.

• Localization on Three-Dimensional Roadways: In reality,
there are three-dimensional road networks. We can extend
our two-dimensional solution to a three-dimensional solu-
tion for localization in such road networks if we have the
road map for the road networks.

• Traffic Measurement Duration: Since our localization
scheme depends on the passive traffic measurement, it will
take a long time comparing with other legacy schemes.
Thus, we need to determine the traffic measurement dura-
tion for the road segment estimation in terms of the com-
putation cost and the accuracy of the virtual topology, con-
sidering road traffic condition.

• Optimal Aggregation Window Size in Aggregation-based
Road Estimation: We need to investigate the function to
give an optimal aggregation window size in terms of local-
ization accuracy, considering road traffic condition, such
as vehicle mean speed and vehicle speed deviation.

5 Performance Evaluation
As we explain in the introduction, there is no other solution

appropriate to our scenario for localization in road networks.
Instead of comparing our schemes with other state-of-the-art

schemes, we investigate the effect of the following three pa-
rameters on our localization scheme:

• The time synchronization error standard deviation,

• The vehicle speed standard deviation, and

• The vehicle interarrival time.
We want to show the operational region of our localization
scheme for these three parameters.

We present two kinds of performance evaluations as follows:
First, we compare the aggregation-based estimation method
with the nonaggregation-based estimation method in terms of
the estimation accuracy for road segment length. For the esti-
mation accuracy, the Matrix Error Ratio is defined as the ra-
tio of the sum of the entries of the absolute difference of two
matrices (i.e., Er and Ev) to the sum of the entries of refer-
ence matrix (i.e., Er). Second, we evaluate the performance
of each localization method consisting of a combination of the
aggregation-based estimation method and prefiltering types be-
low that use the same graph-matching algorithm specified in
Section3.4. The Localization Error Ratio is defined as the ratio
of the number of incorrectly localized sensors to the number of
all sensors deployed on the road network.

The simulation environment is described in Table 2. From
road traffic measurement, we create a matrix Mv for the virtual
topology as the average of 10 matrices Mvs that are adjacency
matrices of the virtual topology created from the same measure-
ment time, such as one hour; that is, Mv is the all-pair shortest
path estimation matrix for the virtual topology, as shown Fig-
ure 2(b).

5.1 Performance Comparison between Road
Segment Estimation Methods

We compare the performance of localization schemes ac-
cording to the following two road segment estimation methods:

1. The aggregation-based road segment estimation and

2. The nonaggregation-based road segment estimation.
After the estimation, we perform the prefiltering algorithm de-
scribed in Section 3.3 and the graph matching algorithm de-
scribed in Section 3.4 in order to evaluate the Matrix Error Ratio
and Localization Error Ratio. For the maximum time synchro-
nization error, Figure 11 shows the performance comparison be-
tween the aggregation and non-aggregation methods. For the
aggregation method, the Matrix Error Ratio is less than 0.03,
which indicates that Ẽv of the reduced virtual subgraph G̃v is
very close to the Er of the real graph Gr, as shown in Figure 2,
where G̃v is a subgraph of the virtual topology Hv. We can see
that most Matrix Error Ratios of the aggregation method are
less than the Matrix Error Ratios of the nonaggregation method.
That is why the aggregation method gives better localization
than the non-aggregation. From Figure 11(b), we can see that
our localization works well in the case in which the maximum
time synchronization error is less than 0.4 seconds. We can
claim that our localization scheme can work in the real environ-
ment, since the state-of-the-art time synchronization protocols
can give the accuracy at the millisecond level [5, 12].

For the vehicle speed deviation, as shown Figure 12, the
aggregation method outperforms the nonaggregation method
in that the Matrix Error Ratio of the aggregation is less that
that of the nonaggregation method. That is why the aggrega-
tion method can give more accurate localization than the non-
aggregation method, except for the vehicle speed deviation of
15[km/h]. This speed deviation of 15[km/h] is the value out of

11

Table 2. Simulation Environment
Parameter Description

Number of sensors 40 sensors (from s1 to s40) are deployed in the road network, as shown in Figure 2.

Simulation time Sensors perform vehicle detection for 10 hours and store the vehicle-detection timestamps into

their repositories.

Time synchronization error Sensor’s time synchronization error conforms to a uniform distribution with the interval

[−εmax,εmax] where εmax=0.01[sec].

Vehicle speed distribution Vehicle speed conforms to a Gaussian distribution of N(µv,σ
2
v) where µv = 50[km/h]

and σv = 5[km/h].

Vehicle speed boundary Vehicle’s maximum speed is 80[km/h] and vehicle’s minimum speed is 20[km/h].

Vehicle interarrival time Every vehicle arrives at road network in the interval 120[sec].

Let du,v be the shortest path distance from source intersection u and destination

Vehicle travel length distribution intersection v in road network. Vehicle’s travel path length from u and v conforms

a Gaussian distribution of N(µd ,σ2
d) where µd = du,v[m] and σd = 500[m].

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.01

0.02

0.03

0.04

0.05

0.06

Max Time Sync Error [sec]

M
a

tr
ix

 E
rr

o
r

R
a

ti
o

Aggregation
Nonaggregation

(a) Matrix Error Ratio according to
Maximum Time Synchronization Er-
ror

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

Max Time Sync Error [sec]

L
o

c
a

liz
a

ti
o

n
 E

rr
o

r
R

a
ti
o

Aggregation
Nonaggregation

(b) Localization Error Ratio accord-
ing to Maximum Time Synchroniza-
tion Error

Figure 11. Performance Comparison between Aggregation and Nonaggregation Methods for Maximum Time Synchroniza-
tion Error (εmax)

5 7.5 10 12.5 15 17.5 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Vehicle Speed Deviation [km/h]

M
a

tr
ix

 E
rr

o
r

R
a

ti
o

Aggregation
Nonaggregation

(a) Matrix Error Ratio according to
Vehicle Speed Deviation

5 7.5 10 12.5 15 17.5 20
0

0.2

0.4

0.6

0.8

1

Vehicle Speed Deviation [km/h]

L
o
c
a
liz

a
ti
o
n
 E

rr
o
r

R
a
ti
o

Aggregation
Nonaggregation

(b) Localization Error Ratio accord-
ing to Vehicle Speed Deviation

Figure 12. Performance Comparison between Aggregation and Nonaggregation Methods for Vehicle Speed Deviation (σv)

0 1 2 3 4 5 6 7
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Vehicle Interarrival Time [sec]

M
a

tr
ix

 E
rr

o
r

R
a

ti
o

Aggregation
Nonaggregation

(a) Matrix Error Ratio according to
Vehicle Interarrival Time

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Vehicle Interarrival Time [sec]

L
o

c
a

liz
a

ti
o

n
 E

rr
o

r
R

a
ti
o

Aggregation
Nonaggregation

(b) Localization Error Ratio accord-
ing to Vehicle Interarrival Time

Figure 13. Performance Comparison between Aggregation and Nonaggregation Methods for Vehicle Interarrival Time
(1/λ)

the operational region for our localization scheme, so the corre- sponding localization error ratio is always a random value close

12

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

Max Time Sync Error [sec]

L
o

c
a

liz
a

ti
o

n
 E

rr
o

r
R

a
ti
o

APL Prefilter
Prefilter 1
Prefilter 2

(a) Localization Error Ratio accord-
ing to Maximum Time Synchroniza-
tion Error

5 7.5 10 12.5 15 17.5 20
0

0.5

1

1.5

Vehicle Speed Deviation [km/h]

L
o
c
a
liz

a
ti
o
n
 E

rr
o
r

R
a
ti
o

APL Prefilter
Prefilter 1
Prefilter 2

(b) Localization Error Ratio accord-
ing to Vehicle Speed Deviation

Figure 14. Performance Comparison among Prefiltering Types

to 1. However, considering the real statistics [14] that the vehi-
cle speed deviation in four-lane roadways is 9.98[km/h], and the
vehicle speed deviation in two-lane roadways is 8.69[km/h], we
can claim that our localization can work in the real environment,
since our localization scheme works with the vehicle speed de-
viation less than 10[km/h].

For the vehicle interarrival time, as shown Figure 13, we
see that it does not affect the performance of our localization
scheme. The reason is that our time difference operation can
give accurate estimates for road segment lengths, as long as the
vehicle interarrival time is larger than 1 second and it allows for
enough road traffic to cover all of the road segments. In fact,
most people drive their vehicles with the interval time larger
than 1 second for their safety, so we can claim that our local-
ization works in normal driving condition. For the aggregation
method, the Matrix Error Ratio is less than 0.015, which indi-
cates that Ẽv of the reduced virtual subgraph G̃v is very close to
the Er of the real graph Gr. This is why the aggregation method
gives 100% localization, except for 1-second vehicle interar-
rival time. We can see that all of the Matrix Error Ratios of the
aggregation method are less than those of the nonaggregation
method.

5.2 Performance Comparison among Prefilter-
ing Types

We compare the performance of localization schemes, ac-
cording to the following three prefiltering types:

1. Prefilter 1: Prefiltering based on the minimum spanning
tree described in Section 3.3.2,

2. Prefilter 2: Prefiltering based on the relative deviation error
described in Section 3.3.1, and

3. APL Prefilter: Prefiltering based on both the relative devi-
ation error and the minimum spanning tree.

Each prefiltering type uses a matrix Mv created by the
aggregation-based road segment method. After the prefilter-
ing step and the construction step of a reduced virtual subgraph
G̃v = (Ṽv, Ẽv), the same graph-matching algorithm described in
Section 3.4 is applied to the output matrix Ẽv in order to eval-
uate the Localization Error Ratio. From Figure 14, our local-
ization with APL Prefilter works well under reasonable, real
environment in which the maximum time synchronization er-
ror is less than 0.4[sec], and the vehicle speed deviation is less
than 12.5[km/h]. As we can see Figure 14, one missing of the
minimum-spanning-tree-based prefilter (i.e., Prefilter 1) and the
relative-deviation-error-based prefilter (i.e., Prefilter 2) cannot
allow for the accurate localization under the reasonable, real

0
0.01

0.02
0.03

0.04
0.05

0.06
0.07

0.08
0.09

0.1 0
2.5

5
7.5

10
12.5

15
17.5

20
22.5

25

0

0.5

1

Vehicle Speed Deviation [km/h]
Maximum Time Sync Error [sec]

L
o
c
a
liz

a
ti
o

n
 E

rr
o

r
R

a
ti
o

Figure 15. APL Operational Region for Maximum Time
Synchronization Error and Vehicle Speed Deviation

environment. That is why we use the combination of two pre-
filters. From Figure 14(a), the Prefilter 2 outperforms the Pre-
filter 1 according as the maximum time synchronization error
increases. On the other hand, Figure 14(b), the Prefilter 1 out-
performs the Prefilter 2 according as the vehicle speed devia-
tion increases. From these figures, we can conclude that two
prefilters cooperate the error reduction in edge estimates for our
localization.

Figure 15 shows the APL operational region that contains the
range of the maximum time synchronization error and the vehi-
cle standard deviation to allow for a perfect localization under
the simulation environment given in Table 2. As we can see, our
localization scheme works well in the case in which the vehicle
standard deviation is less than 10[km/h], regardless of the max-
imum time synchronization error from 0.01 to 0.1[sec]. As we
mentioned before, this threshold for the vehicle standard devia-
tion is close to the real statistics of the vehicle speed deviation
(e.g., 9.98[km/h] for four-lane roadways) [14]. For the vehi-
cle interarrival time, our localization works well as long as the
interarrival time is greater than 1 second. Thus, we can con-
clude that the vehicle speed deviation is the dominant factor of
the performance in our localization scheme. Also, we can claim
that our localization scheme can work in the real road networks.

6 Related Work
Many localization schemes have been proposed so far, and

they can be categorized into three classes: (a) Range-based lo-
calization schemes, (b) Range-free localization schemes, and
(c) Event-based localization schemes. They have different as-
sumptions about their respective networks and device capa-
bilities. These assumptions include the device hardware, sig-

13

nal propagation models, timing, energy requirements, network
configuration (i.e., homogeneous vs. heterogeneous), environ-
ments (i.e., indoor vs. outdoor), node or beacon density, time
synchronization of devices, communication cost, error require-
ments, node mobility, and localization time. We discuss these
legacy localization schemes by categorizing them into the three
classes.

6.1 Range-Based Localization Schemes
Range-based schemes require costly hardware devices to es-

timate the distance between nodes, along with the additional
energy consumption for them. The Time of Arrival (TOA)
and Angle of Arrival (TDOA) schemes measure the propaga-
tion time of the signal, and estimate the distance based on the
propagation speed. The most popular use of the TOA technique
is GPS, which is a very costly solution for localization in wire-
less sensor networks [25]. The TDOA based on signal propa-
gation time requires expensive, energy consuming ranging de-
vices, since the devices are required to be time-synchronized
at a high granularity [19, 20]. These devices are unfeasible for
low-power sensor nodes. The TDOA scheme based on ultra-
sound requires a dense deployment of sensors, since ultrasound
signals usually propagate only 20-30 feet. This dense deploy-
ment in large-scale road network is very costly.

The Angle of Arrival (AOA) schemes estimate the positions
of the nodes by sensing the direction from which a signal is
received [15]. However, the AOA scheme requiring angle es-
timation devices is also unsuitable for low-power sensor nodes
equipped with additional hardware devices for angle estimation,
such as an antenna array or several ultrasound receivers.

The Received Signal Strength Indicator (RSSI) schemes use
either theoretical or empirical models to estimate the distance
based on the loss of power during signal propagation. In the
RSSI scheme based on Radio Frequency (RF) wireless signals
[2, 9], the signal strength is translated into distance estimate.
In [2], several beacon nodes are used to emit RF wireless sig-
nals and a map of signal strengths is created. A mobile node can
be located by matching its signal strength with the map. How-
ever, in real environments where sensors are deployed, there
are multi-path fading, irregular signal propagation, and back-
ground interference. These are big impediments for the RSSI
schemes for the sensor networks. Thus, since the expensive,
energy-consuming hardware devices are required for ranging, it
is very costly to apply these schemes to tiny low-power sensor
nodes deployed in large-scale road networks.

6.2 Range-Free Localization Schemes
To address the limitations of the range-based schemes for

the sensor networks, range-free localization schemes have been
proposed. The range-free localization schemes try to localize
sensors without costly ranging devices. One of the most popu-
lar range-free schemes is based on anchor-based scheme, where
anchors with their own exact location information broadcast
beacon signals to neighboring nodes called non-anchors. The
main idea is that the non-anchors can determine their locations
using the overlapped region of communication areas for the an-
chors [3, 7, 23]. However, since these schemes require a dense
deployment of anchors to give beacon signals, such a deploy-
ment is the overkill for the localization in road networks, where
the localization granularity is the possible area, such as inter-
section points and non-intersection points on the roadways.

Another range-free scheme is anchor-free distributed local-
ization scheme, not using anchors [17]. Sensors initially guess

their positions, and iteratively correct their positions by estimat-
ing the distances between their neighbors and themselves on the
basis of radio connectivity. The correction algorithm for their
positions is based on a physics model called mass spring model.
Each node tries to minimize the difference between the guessed
neighbor distance and the actually measured neighbor distance
for each neighboring node. However, this scheme requires a
dense deployment of sensors to obtain the accurate distance es-
timation. This incurs a costly deployment for the sensor net-
works deployment on the road networks. Thus, in the case in
which the spacing between the sensors is large for communica-
tion for localization, the range-free localization schemes require
the dense deployment of sensors including anchors, leading to
the costly deployment in large-scale road networks.

6.3 Event-Based Localization Schemes
Recently, event-based localization schemes have been pro-

posed to simplify the functionality of sensor nodes for localiza-
tion, and to provide high-quality localization. The main idea
of these schemes is to use artificial events for sensor local-
ization that are generated from the event scheduler [8, 18, 22].
Some well-controlled artificial events, such as light, are injected
into sensor networks. When sensor nodes detect these events,
they report the detection times to a base station that computes
complex algorithms for sensor localization, the event-detection
timestamps provided by the sensor nodes. However, in out-
door environments, it is very hard to generate and disseminate
these artificial events to a large-scale area. In particular, in the
road networks of cities, there are many buildings and structures.
These are the impediments for the exact delivery of events. This
is caused by the dependency of the artificial events. On the other
hand, our localization scheme is a new branch of event-based lo-
calization schemes. Since our localization scheme is based on
natural events of moving vehicles, there is such no problem of
the event delivery.

7 Conclusion
We address the localization problem in road networks around

a target area with the aerial deployment of sensors with low-
cost hardware. We propose an efficient estimation method to
estimate road segment lengths only with the vehicle-detection
timestamps. Also, we propose prefiltering algorithms, eliminat-
ing path estimates with with large errors, and keeping edge es-
timates. Through the outdoor test and simulation, we show that
our localization scheme allows for a sparse deployment of sen-
sors on road networks without costly, energy consuming hard-
ware for localization. In future work, we will develop the ve-
hicle detection algorithm for motes, such as Micaz and XSM,
placed on intersections or non-intersections, and then will de-
ploy and test our scheme on large-scale roadways.

8 References
[1] J. Aspnes, T. Eren, D. K. Goldenberg, A. S. Morse, W. Whiteley, Y. R.

Yang, B. D. Anderson, and P. N. Belhumeur. A theory of network lo-
calization. IEEE Transactions on Mobile Computing, 5(12):1663–1678,
Dec. 2006.

[2] P. Bahl and V. N. Padmanabhan. Radar: An in-building rf-based user
location and tracking system. In Proceedings of INFOCOM, Mar. 2000.

[3] N. Bulusu, J. Heidemann, and D. Estrin. Gps-less low cost outdoor local-
ization for very small devices. IEEE Personal Communications, 7(5):28–
34, Oct. 2000.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms (2nd Edition). The MIT Press, 2003.

[5] J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchroniza-
tion using reference broadcasts. In Proceedings of the Fifth Symposium

on Operating Systems Design and Implementation (OSDI), Boston, MA,
USA, Dec. 2002.

[6] L. Gu, D. Jia, P. Vicaire, T. Yan, L. Luo, A. Tirumala, Q. Cao, T. He,
J. A. Stankovic, T. Abdelzaher, and B. H. Krogh. Lightweight detection

14

and classification for wireless sensor networks in realistic environments.
In Proceedings of the third Conference on Embedded Networked Sensor

Systems (SenSys), San Diego, California, USA, Nov. 2005.

[7] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. Abdelzaher. Range-
free localization schemes for large scale sensor networks. In Proceedings
of MOBICOM. ACM, Sept. 2003.

[8] T. He, R. Stoleru, and J. A. Stankovic. Spotlight: Low-cost asymmet-
ric localization system for networked sensor nodes. In Proceedings of

the fourth International Conference on Information Processing in Sensor

Networks (IPSN), Los Angeles, California, USA, Apr. 2005. ACM/IEEE.

[9] J. Hightower, G. Boriello, and R. Want. Spoton: An indoor 3d location
sensing technology based on rf signal strength. University of Washington
Technical Report, (2000-02-02), Feb. 2000.

[10] J. Lladós, E. Maritı́, and J. J. Villanueva. Symbol recognition by error-
tolerant subgraph matching between region adjacency graphs. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 23(10), Oct.
2001.

[11] M. MacDougall. Simulating Computer Systems: Techniques and Tools.
MIT Press, 1987.

[12] M. Maróti, B. Kusy, G. Simon, and Ákos Lédeczi. The flooding time syn-
chronization protocol. In Proceedings of the second Conference on Em-

bedded Networked Sensor Systems (SenSys), Baltimore, Maryland, USA,
Nov. 2004.

[13] S. Meguerdichian and M. Potkonjak. Low power 0/1 coverage and
scheduling techniques in sensor networks. UCLA Technical Report,
(030001), Jan. 2003.

[14] V. Muchuruza and R. Mussa. Traffic operation and safety analyses of
minimum speed limits on florida rural interstate highways. In Proceedings

of the 2005 Mid-Continent Transportation Research Symposium, pages 1–
10, Ames, Iowa, USA, Aug. 2005.

[15] D. Niculescu and B. Nath. Ad hoc positioning system (aps) using aoa.
In Proceedings of the Conference on Computer Communications (INFO-
COM), San Francisco, CA, USA, 2003.

[16] C. Oh, A. Tok, and S. Ritchie. Real-time freeway level of service using
inductive-signature-based vehicle reidentification system. IEEE Transac-

tions on Intelligent Transportation Systems, 6(2):138–146, June 2005.

[17] N. B. Priyantha, H. Balakrishnan, E. Demaine, and S. Teller. Anchor-free
distributed localization in sensor networks. MIT Technical Report, (892),
Apr. 2003.

[18] K. Römer. The lighthouse location system for smart dust. In Proceedings

of MOBISYS, pages 15–30, San Francisco, CA, USA, 2003.

[19] A. Savvides, C. C. Han, and M. B. Srivastava. Dynamic fine-grained
localization in ad-hoc networks of sensors. In Proceedings of MOBICOM,
Rome, Italy, July 2001.

[20] A. Savvides, H. Park, and M. B. Srivastava. The bits and flops of the n-hop
multilateration primitive for node localization problems. In Proceedings

of the first ACM International Workshop on Wireless Sensor Networks and

Application, Atlanta, GA, USA, Sept. 2002.

[21] R. Stoleru, T. He, J. A. Stankovic, and D. Luebke. A high-accuracy, low-
cost localization system for wireless sensor networks. In Proceedings of
the third Conference on Embedded Networked Sensor Systems (SenSys),
San Diego, California, USA, Nov. 2005.

[22] R. Stoleru, P. Vicaire, T. He, and J. A. Stankovic. Stardust: A flexible
architecture for passive localization in wireless sensor networks. In Pro-

ceedings of the fourth Conference on Embedded Networked Sensor Sys-
tems (SenSys), Boulder, Colorado, USA, Nov. 2006. ACM.

[23] C. Taylor and A. R. J. Bachrach. Simultaneous localization, calibration,
and tracking in an ad hoc sensor network. In Proceedings of the Fifth

International Conference on Information Processing in Sensor Networks

(IPSN), Nashville, TN, USA, Apr. 2006.

[24] S. Umeyama. An eigendecomposition approach to weighted graph match-
ing problems. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 10(5), Sept. 1988.

[25] B. H. Wellenhoff, H. Lichtenegger, and J. Collins. Global Positions Sys-
tem: Theory and Practice (4th Edition). Springer Verlag, 1997.

A Theorem A.1
THEOREM A.1. Suppose that M is an n×n matrix, and M(i, j)
is the shortest path length from node i to node j in a graph G
that has n nodes. Let A be the set of all edges in graph G. Sup-
pose that M′ is another n×n matrix, and M′(i, j) is the shortest
path length from node i to node j in another graph G′ that has
n nodes such that G′ ⊆G. Let A′ be the set of all edges in graph

G′ such that A′ ⊂ A. If M(i, j) is the smallest entry that satisfies
M(i, j) < M′(i, j), then M(i, j) must be the length of an edge,
which is included in A and excluded in A′.
PROOF. We prove the claim using contradiction. Let G = (V,E)
such that V is the node set of G, and E is the edge set of G. Let
euv be an edge whose endpoints are u and v for u,v ∈V (G). Let
ek be the k-th edge in the edge set A where A = E(G) in terms
of edge length. Let l(ei) be the length of edge ei.

Suppose that M(i, j) is the length of the shortest path be-
tween nodes i and j rather than the length of the edge between
nodes i and j. It must be the sum of the lengths of edges in A as
follows:

M(i, j) =
m

∑
k=1

l(ek), ek ∈ A (17)

Similarly, M′(i, j) must be the sum of the lengths of edges in
A′. We know that M(i, j) ≤ M′(i, j) for all i, j ∈ V (G), since
A′ ⊂ A. From the given condition M(i, j) < M′(i, j), if there
exists an ek for k = 1, ...,m in Eq. 17 such that ek /∈ A′, and the
M(u,v) and M′(u,v) corresponding to the endpoints of the edge
ek = euv satisfy M(u,v) < M′(u,v), then M(u,v) < M(i, j). This
contradicts the minimality of M(i, j).

If there exists no ek for k = 1, ...,m in Eq. 17 such that ek /∈A′,
and the M(u,v) and M′(u,v) corresponding to the endpoints of
the edge ek = euv satisfy M(u,v) < M′(u,v), this means that A′

has the same edges ek for k = 1, ...,m as A has. Thus, M(i, j) =
M′(i, j), since A′ can construct the shortest i, j-path with the
same edges ek for k = 1, ...,m as A has. This contradicts the
condition M(i, j) < M′(i, j).

15

