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Abstract—This paper introduces an optimal path finding
problem for drone battery charging where their batteries should
be charged for the travel from a source to a destination as needed.
We present a practically reasonable heuristic to solve the problem
by monitoring drones’ battery status and traffic conditions in real
time through a cloud-based service called traffic control center.
This study will be the cornerstone of path finding problems for
drone battery charging in drone networks.

I. INTRODUCTION

Recently, drones have been aggressively developed for
hard duties (e.g., military service, delivery service, and disaster
relief), so people expect drones to be commercialized in the
near future. Drones can use various power source (e.g., battery,
solar fuel, hydrogen fuel), but they usually use battery instead
of other energy source because other energy resources are
unsafer than the battery. With this reason, people prefer to use
safe battery. Furthermore, automated battery replacement and
recharge system are actively researched. However, the battery-
based approach has one disadvantage. The disadvantage is
that operation time is short. Of course, operation time is
increasing, but it is evident that this time is still too short to
execute various services. Therefore, it is necessary that drones
can recharge the battery during the execution time of various
services [1]–[3].

This paper is the first work to propose a method about
efficient battery charging for drones during their services. Our
method is is based on Dijkstra algorithm considering charging
time and queuing time at QCMs. In order to reduce the queu-
ing delay, we suggest to utilize a virtual metric called Conges-
tion Contribution [4]. This Congestion Contribution measures
the impact of each drone on the whole drone networks. Drones
report their information (e.g., speed, current position, and
destination position) to the cloud-based management system
called Traffic Control Center (TCC). Then, TCC broadcasts
the gathered statistics to the drones. With this information,
the drones can decide appropriate battery charge stations while
they avoid to cause excessive queuing delay.

The rest of this paper is organized as follows. First of all,
we summarize related work in Section II. Section III describes
problem formulation in an optimal path finding algorithm for
charging drone battery. Section IV explains our drone battery
charging scheme. Section V discusses challenging research
issues. We finally conclude this paper along with future work
in section VI.

II. RELATED-WORK

Recently, a drone (called unmanned aerial vehicle) industry
emerges as a new industry. Originally, a drone was developed
to perform military service (e.g., reconnaissance, monitoring,
and bombing). However, lately, the drones are rapidly being
developed for various purposes because various enterprises
(e.g., Amazon and Google) declare to make use of drones for
a commercial use (e.g., shooting, agriculture, infrastructure
management, data sharing, outdoor/indoor navigation, deliv-
ery, and rescue) [5], [6]. By new services of the drone such as
this, many countries and enterprises (e.g., Parrot [7], Nixie [8],
Dji [9], and Airinov [10]) have put a lot of efforts into reserach
(e.g., software platform, battery, battery recharging machine,
and communications) for drone development.

The software platforms of the drone are researched to
utilize drones for various services [11]. Initially, the software
platforms of drone were developed only for flight control.
However, recently, the software platforms of the drone are
developed to carry out not only flight but also various ser-
vices [5], [6]. Because of this change, the software platforms
of the drone are actively researched.

Because drones usually use a battery to fly, the battery
of the drone is researched. Life time of drones is normally
about 15-40 minutes [12]. However, this life time is too short
to execute various services. Because of this disadvantage, the
battery charging of drones at battery charging machines is
necessary for smooth operation. In other to solve this problem,
much research has been done about battery life time and
charging machine of drones [2], [13], [14].

Research about communications and control of drones
has been performed [15]. For various services, drones are
controlled by the Traffic Control Center (TCC). The drones are
researched about communications with other devices by using
satellites and wireless communications (e.g., WiFi). Further-
more, much research has been done about communications
security in other to prevent malicious users from accessing
drones.

The virtual metric Congestion Contribution is introduced
in [4]. This idea is developed to estimate congestion and
prevent future congestion. Vehicles can cause a congestion as
all of them take a greedy choice. [4] evaluates the impact
of each vehicle on congestion. Then, vehicles takes paths
considering the future congestion.
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III. PROBLEM FORMULATION

In this section, we articulate the goal, drone network
architecture, and assumptions to recharge the battery of drones
in wireless drone networks. Given the trajectories of drones
in wireless drone networks, our goal is to assign appropriate
battery charge stations to drones in order to reduce overall
travel delay. Fig. 1 shows a network of flying drones and
Quick Battery Charge Machine (QCM). Since this QCM is
located in land, drones should land to recharge the battery.

Fig. 1. Wireless Drone Networks

A. Drone Network Architecture

We describe a drone network architecture to support this
paper in wireless drone networks. Our drone network archi-
tecture consists of (i) Traffic Control Center (TCC), (ii) Quick
Battery Charge Machine (QCM), and (iii) Drone:

• Traffic Control Center (TCC): TCC is a drone traffic
management node that maintains the trajectories and
locations of drones for the location management as
used in Mobile IPv6 [16]. the TCC has up-to-date
traffic statistics of drones, such as average speed, cur-
rent position, and destination position in the wireless
drone network under its management.

• Quick Battery Charging Machine (QCM): QCM is
a station which can recharge a drone’s battery. It has
one in coming queue for battery charging drones.

• Drone: Drone is an unmanned aerial vehicle flying
from a source position to a destination position with-
out a pilot. Drones know waiting delay for each QCM
through the communication with TCC.

B. Assumptions

We assume the following to design an efficient path finding
algorithm in wireless drone networks:

• All drones can communicate with the TCC and peri-
odically report their own mobility information (e.g.,
speed, current position, destination position), to the
TCC.

• The TCC knows QCM position and mobility infor-
mation of all drones.

• Each QCM can accommodate only one drone for
charging battery at a time.

IV. DRONE PATH PLANNING SCHEME

In this section, we propose our drone battery charge
scheme. This scheme uses estimated delays (i.e., waiting delay
at QCMs and travel delay from source position to destination
position) and an enhanced shortest path algorithm from source
position to destination position. When a drone ia already
using the QCM, other drones have to wait for their turn for
battery charge in a waiting queue at the QCM, so will have
waiting delay. By this waiting delay, the enhanced shortest
path algorithm considers estimated waiting delay of drones for
each QCM. With this shortest path algorithm, we can assign an
appropriate QCM to each drone in order to reduce the overall
delay from source position to destination position.

A. Time Prediction

We explain how to estimate time to assign appropriate
QCMs to drones. If drones need to recharge their battery,
drones report their own mobility information (e.g., speed,
current position, destination) to the TCC. With this informa-
tion, the TCC can calculate waiting delay t QCMs and travel
delay from source position to destination position because
distance and the speed are used to compute the travel delay
between two positions. Also, because drones are unmanned
aerial vehicles, the speed of drones can continually be kept to
a constant. Thus, we can estimate the overall travel delay.

B. An Optimal Path Planning Algorithm for Drone Battery
Charging

Fig. 2. Finding Path to the Destination

We assume that a drone is planning its path to a destination
and QCMs are located as shown in Fig. 2. The drone can
get this position information from TCC. With this position
information of QCMs, a drone can construct a reachability
graph based on the maximum travel distance with its fully
charged battery. Unlike conventional vehicles, aerial drones
reach any QCM within its maximum travel distance. Then, a
reachability graph is a mesh network. However, drones can
reach limited number of QCMs due to its constrained battery
budget. Thus, the reachability graph is not constructed as a
full mesh. Therefore, we need to find a shortest path on a
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Fig. 3. Reachability Graph

partial mesh topology. The reachability graph is shown in
Fig. 3. If we do not consider the recharging time and the
waiting delay at QCMs, we can find the shortest path with
Dijksta algorithm. Here, we propose our enhanced path finding
algorithm considering recharging time and the waiting delay.
Furthermore, we utilize a virtual metric called Congestion
Contribution (CC) [4] to indicate the congestion level at the
QCM for drones. This CC prevents the situation that many
drones try to recharge at a QCM simultaneously, which cause
a long queueing delay. This case may happen if drones take
a greedy choice with Dijkstra path.

Fig. 4. Congestion Contribution Model

Fig. 5. Congestion Contribution

Congestion Contribution (CC) is illustrated in Fig. 5. If a
drone set its path and report it to TCC, TCC calculate and add
CC for each QCM on the path. CC is proportional to − 1

Di

where Di is the distance between the source position and the
Qi. Then,

y = 1−
x

D
. (1)

Algorithm 1 Queueing-Constrained Shortest Path Algorithm

1: function CONSTRUCT-QUEUE-CONSTRAINED-
SHORTEST-PATH(G, u, v, α)

2: Pqsp ← ∅ � Pqsp will contain the list of QCMs for a
queue-constrained shortest path.

3: Duv ← Compute-Dijkstra-Path-Value(G, u, v) �
Duv is the time-wise shortest delay from u to v in G by
Dijkstra’s shortest path algorithm.

4: Δuv ← α×Duv � Δuv is the α-percent delay
increase for Duv.

5: K ← Compute-k-Smallest-Congestion-Increase-
Paths(G, u, v) � compute the next k smallest congestion
increase paths arranged in nondecreasing order by Yen’s
k-shortest-path algorithm.

6: n← Count-Path-Numbers(K) � count the number
of paths in K .

7: for i← 1, n do
8: D ← Compute-Path-Value(K, i) � compute the

overall delay for the ith path in K .
9: if D ≤ Duv +Δuv then � check the overall

delay constraint of α-percent increase.
10: Pqsp ← Get-Path(K, i) � get the ith path in

K .
11: return Pqsp

12: end if
13: end for
14: Pqsp ← Compute-Dijkstra-Path(G, u, v) � set

Pqsp to the time-wise shortest path from u to v in G by
Dijkstra’s shortest path algorithm.

15: return Pqsp

16: end function

As a drone make a decision based on this CC value, it
can avoid long queueing delay and prevent it at the same
time. Algorithm 1 is based on the Delay-Constrained Shortest
Path Algorithm in [4]. Let us explain our Delay-constrained
Shortest Path algorithm in details as follows:

In Algorithm 1, a queueing-constrained shortest path Pqsp

is returned for the input of the reachability graph G, source
u, destination v, and α-increase value. In line 2, Pqsp a list
of QCMs for the queueing-constrained shortest path. In line
3, Duv is calculated as follows:

Duv =
∑

(i,j)∈Ep

Tij +
∑

k∈Vp

Ck +
∑

k∈Vp

Wk, (2)

where

• P : Dijkstra path from u to v. P=(Vp, Ep),

• Duv: overall delay for P ,

• Tij : travel delay from Qi to Qj ,

• Ck: charging delay at Qk, and

• Wk: waiting delay at Qk.

4 computes the α-percent delay which is α-percent increased
from Duv. In line 5, k shortest paths [17] are calculated
by Compute-k-Smallest-Congestion-Increase-Path() in terms
of Congestion Contribution. In line 6, we set n to the number
of paths in K . In lines 7-13, a queueing-constrained shortest
path Pqsp is selected. Pqsp is the smallest congestion increase
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path, while satisfying the delay constraint of Duv + Δuv. In
line 8, D is the overall delay computed in the same way with 2.
In line 10, Get-Path(K, i) imposes CC for each QCM in Pqsp.
If there is no such path in K , in line 14, the shortest path
computed by Dijkstra’s algorithm is set to Pqsp.

The time complexity of Algorithm 1 is O(kN(M +
N logN)), where N = |V (G)|, M = |E(G)|, and k is the
number of paths in k-shortest-path algorithm in line 5 [17].
k-shortest-path algorithm is the dominant function in Algo-
rithm 1. Its time complexity is O(kN(M + N logN)) [17].
Thus, the time complexity is O(kN(M +N logN)).

V. RESEARCH ISSUES

We have the following research issues for drones in drone
networks.

1) We should consider the environment factors such as
wind and terrain (e.g., mountain, obstacle, infrastruc-
ture, resident area, etc.) which may affect the travel
time of drones.

2) In this paper, we consider the charging time as
constant. We can enhance our path planning scheme
as we consider the charging time as a variable.

3) For gathering and disseminating statistics between
drones and TCC, we need to consider the wireless
networks through IEEE 802.11p or IEEE 802.11a.

4) Besides the queueing at QCMs, closely-packed
drones may collide each other. We need to consider
a control system to avoid collision between drones.

5) We need to optimize the congestion contribution
curve that considers a drone’s travel delay, waiting
delay, and charging delay.

VI. CONCLUSION

In this paper, we proposed our scheduling algorithm to
assign appropriate QCMs to drones. Our algorithm aims
at reducing overall travel delay for drones at QCMs. Our
algorithm is suggested based on [4], [17]. We believe that
our algorithm will contribute to commercialize drones. As
future work, we will evaluate the performance of our algorithm
by comparing ours with other baseline algorithms through
simulation, and enhance our drone battery charge algorithm.
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