
Security Policy Generation for Cloud-Based
Security Services using Large Language Model

Mikel Larrarte Rodriguez∗, Jorge Alcorta Berasategui†, and Jaehoon (Paul) Jeong‡
∗Faculty of Informatics, University of the Basque Country, San Sebastian, Spain

†Faculty of Engineering, University of Deusto, Bilbao, Spain
‡Department of Computer Science & Engineering, Sungkyunkwan University, Suwon, Republic of Korea

Email: {2024319650, 2024319370}@g.skku.edu, pauljeong@skku.edu

Abstract—This paper proposes an intelligent Security Policy
Translator (SPT) to automate security policy generation using
the GPT-4o-mini language model. This SPT focuses on translating
natural language descriptions into XML policies compliant with
the Consumer-Facing Interface (CFI) in the framework for Inter-
face to Network Security Functions (I2NSF). The SPT simplifies
the creation of policies for non-technical users, enabling seamless
configuration of network security rules. By leveraging OpenAI’s
API, the model interprets a user input and outputs structured,
machine-readable policies that are aligned with IETF I2NSF
standards. The paper demonstrates the feasibility of integrating
Large Language Models (LLM) into cybersecurity workflows and
highlights opportunities to improve scalability, context awareness,
and interoperability within the I2NSF framework.

Index Terms—Large Language Model, I2NSF, Network Se-
curity Function, Consumer-Facing Interface, Security Policy
Translator.

I. INTRODUCTION

Defining and enforcing security policies is a fundamental
aspect of modern cybersecurity. These policies govern how
network traffic is managed to ensure compliance with security
policies and protect sensitive data. However, creating accurate,
machine-readable policies often requires technical expertise,
making it challenging for non-expert users.

Interface to Network Security Functions (I2NSF) [1], which
is standardized by the Internet Engineering Task Force (IETF),
provides a standardized framework for defining security poli-
cies for cloud-based security services. These security policies
are used to configure Network Security Functions (NSF) for
the required security services in either a cloud system or an
edge system. Its Consumer-Facing Interface (CFI) specifies an
XML schema for policy representation, ensuring consistency
and interoperability. Despite its advantages, the manual cre-
ation of such policies is time-consuming and prone to errors.

This paper addresses these challenges by leveraging GPT-
4o-mini [2], which is a Large Language Model (LLM), is op-
timized for structured data generation, and supports powerful
prompting. By carefully designing prompts, the system can
translate natural language descriptions into I2NSF-compliant
XML policies, more specifically into the Consumer-Facing
Interface [3] XML policies. Prompting enables the model
to effectively interpret a user intent and generate a highly
accurate output, demonstrating the advantages of this approach
for structured data tasks.

Fig. 1. Diagram of security policy translation with LLM.

This work highlights the potential of prompting as a tool
for bridging the gap between a human intent and a machine-
executable configuration, making policy creation be very ac-
cessible, efficient, and reliable.

The remainder of this paper is organized as follows. Sec-
tion II provides related work in security policy enforcement
in the I2NSF framework. Section III outlines the methodology
used in designing our system to generate I2NSF security
policies. Section IV presents the implementation details and
the obtained results. Finally, Section VI concludes this paper
along with future work.

II. RELATED WORK

First of all, it is essential to briefly explain the Consumer-
Facing Interface (CFI) [3]. This CFI in the I2NSF framework
allows a security administrator to define high-level security
policies that are subsequently translated into low-level configu-
rations for enforcement by Network Security Functions (NSFs)
such as firewall and web filter. Using an Event-Condition-
Action (ECA) policy model, the CFI structures policies around
specific events (e.g., system alarms), conditions (e.g., network
traffic attributes and time-based restrictions), and actions (e.g.,



allowing, dropping, and rate-limiting traffic). The CFI also
supports the definition of Endpoint Groups, which mean
group network entities such as users, devices, and locations,
simplifying the application of the policy. Integration with
threat prevention allows for dynamic updates based on external
risk data. The CFI’s YANG data model ensures a standard-
ized, machine-readable approach for defining and translating
policies. It facilitates seamless communication between an
I2NSF user and an I2NSF security controller in the I2NSF
framework, and also reduces the complexity of security policy
management.

III. METHODOLOGY

The core of this paper’s methodology lies in the effective
understanding of natural language descriptions and the careful
design of prompts to translate these inputs into machine-
readable structured XML policies compliant with I2NSF [1].

A. Natural Language Understanding

The I2NSF system employs GPT-4o-mini [2] as a language
model optimized for structured data tasks to interpret and
process a user input. This step is critical to bridge the gap
between human-readable descriptions and machine-executable
configurations.

The model is designed to extract the user’s intent from
natural language descriptions, identifying key components
such as events, conditions, and actions. Conditions may in-
clude factors like specific time periods, days of the week, or
URL categories, while actions involve tasks like allowing or
blocking particular types of network traffic. This ensures that
the system captures both the “what” (actions to be taken) and
the “when” (conditions under which the actions should apply).
Using GPT-4o-mini’s advanced contextual understanding, the
system accurately dissects complex policy descriptions.

B. Prompt Engineering

Prompting [4] is the cornerstone of this system, as carefully
crafted prompts allow the model to generate the desired output
without the need of fine-tuning it and consequentially and
also without a large amount of data. In this case, the prompt
is designed to guide the model’s attention to relevant details
such as time constraints, URL categories, and actions, thereby
ensuring compliance with the I2NSF [1] schema. The prompt
structure is intentionally designed to get specific elements of
the security policy from the I2NSF user’s input.

1) Prompt Selector: To further enhance the functionality
of the prompting mechanism, we implemented a prompt-
selector system. This mechanism leverages the LangChain
[5] framework to dynamically integrate few-shot examples
to improve the performance of the LLM. We detail the core
components and their functionality within the prompt-selector
mechanism as follows.

An essential element of this mechanism is the PromptTem-
plate, which ensures that prompts maintain a consistent format.
The defined template uses the following structure:
Question: {input}
{output}

This template serves to pair a natural language input with
the corresponding structured output, enabling seamless in-
teraction with the language model. Predefined examples are
provided as a key input to the system. One example consists
of the following:

• Input: A natural language query, such as “Restrict access
to adult content from all devices.”

• Output: A structured XML file detailing a required
security policy, adhering to a specific schema. Listing 1
shows this XML file for the required security policy.

<i2nsf-cfi-policy
xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-cfi-policy">
<name>restrict_adult_content_policy</name>
<rules>

<name>restrict_adult</name>
<condition>

<url-condition>
<url-name>adult_content</url-name>

</url-condition>
</condition>
<actions>

<primary-action>
<action>drop</action>

</primary-action>
</actions>

</rules>
</i2nsf-cfi-policy>

Listing 1. A security policy for restricting adult content

The mechanism employs a SemanticSimilarityExampleS-
elector, which uses techniques such as vector embeddings
to measure semantic similarity [6] between a user’s query
and predefined examples. Semantic similarity evaluates how
closely the meanings of two pieces of text align with
each other, even if the wording differs. By converting text
into numerical representations (i.e., embeddings) in a high-
dimensional space, the selector calculates the proximity be-
tween the query and predefined examples, identifying those
most relevant to the query’s intent. This ensures the selection
of the most contextually relevant examples for the task.
These examples are then integrated into a cohesive prompt
using a FewShotPromptTemplate, enhancing the model’s task-
specific understanding. The enriched prompt is processed by
the language model to generate an output, often in XML,
which can be validated against schemas or business rules for
domain alignment.

IV. IMPLEMENTATION

This section describes the design process of the prompt
and shows a generated CFI security policy [3]. The gen-
eral overview of the implementation is shown in Fig. 1.
The source code of our implementation is available at
the GitHub repository of https://github.com/jaehoonpauljeong/
Data-Modeling-Group-2-Project. The demonstration video
clip is available at the YouTube of https://youtu.be/
yrNMPQB2R64.

When calling the model to translate the input into a security
policy XML file, we designed a specific prompt to condition
the model. In addition to making use of few-shot learning [7]
providing the model with some examples of the objective task,
our system includes a detailed YANG data model of the CFI
to serve as a guideline for the model.

After defining the prompt, we generated some examples
with different inputs to test the performance of the model.

https://github.com/jaehoonpauljeong/Data-Modeling-Group-2-Project
https://github.com/jaehoonpauljeong/Data-Modeling-Group-2-Project
https://youtu.be/yrNMPQB2R64
https://youtu.be/yrNMPQB2R64


Due to a lack of security policies, a quantitative evaluation of
the implementation was not possible. Therefore, we evaluated
the generated output taking its format, syntax, and contents
into account.

%\begin{lstlisting}[language=XML, label={lst:example2}, caption={Input: "Block SNS
access during office hours with a weekly frequency (9am-5pm;
Monday-Friday)"}]

<?xml version="1.0" encoding="UTF-8" ?>
<i2nsf-cfi-policy

xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-cfi-policy">
<name>block_sns_access_during_office_hours</name>
<rules>

<name>block_sns_access</name>
<condition>

<time>
<frequency>weekly</frequency>
<period>

<start-time>09:00</start-time>
<end-time>17:00</end-time>
<day>Monday</day>
<day>Tuesday</day>
<day>Wednesday</day>
<day>Thursday</day>
<day>Friday</day>

</period>
</time>
<url-category>

<url-name>SNS</url-name>
</url-category>

</condition>
<actions>

<primary-action>
<action>drop</action>

</primary-action>
</actions>

</rules>
</i2nsf-cfi-policy>

Listing 2. A security policy for blocking SNS access during office hours

In the above example, we used the following input:
Block SNS access during office hours with a weekly frequency
(9am-5pm; Monday-Friday). As shown in Listing 2, the result
looks promising since the format of the XML scheme follows
the provided guideline. The syntax is appropriate enough to
capture the required contents to construct a security policy
from the input text accordingly.

V. EXECUTION FLOW

The generation of XML policies has the following six steps.
1) Define Examples with Input-Output Pairs: Create a

list of examples where each example consists of:
• An Input in a natural language, such as “Block

malicious websites for my son’s computer.”
• An Output in the XML file for the corresponding

security policy.
This list serves as references for generating new outputs.

2) Initialize Semantic Similarity Example Selector: Use
an embedding model to convert all example inputs
into numerical vector embeddings. These embeddings
are stored in a vector database to efficiently retrieve
examples most relevant to a given query.

3) Create Few-Shot Prompt Template: Construct a
prompt that combines the following components:

• Contextual instructions: High-level guidance for
generating XML security policies.

• Selected examples: Examples retrieved based on
their semantic similarity to the query, which are
retrieved using semantic search algorithms.

• User input query: The specific natural language
query, which is an input in a high-level language,
requiring an XML policy.

4) Configure the Large Language Model (LLM): Pass
the constructed prompt to a language model, such as
GPT-4. The model processes the input and generates the
corresponding XML security policy.

5) Process New Queries: For a new input query:
a) Search the vector database for semantically similar

examples.
b) Integrate the retrieved examples into the few-shot

prompt template.
c) Pass the final prompt to the LLM for output

generation.
6) Output: Return the generated XML file as a security

policy for the input text.

VI. CONCLUSION

This paper demonstrates the potential of Large Language
Models (LLM) for a Security Policy Generator (SPT) in
the I2NSF framework. The SPT with LLM automates the
generation of an I2NSF security policy from a natural language
description. By using prompt engineering and the structured
YANG data model of the Consumer-Facing Interface, the pro-
posed SPT simplifies policy creation for non-technical users,
ensuring efficiency and compliance with the I2NSF frame-
work. While qualitative evaluation shows promising results
in terms of format and content alignment, future work will
focus on expanding policy datasets for quantitative assessment,
improving model scalability, and enhancing context awareness
to address diverse cybersecurity scenarios. Moreover, the in-
tegration of our implementation with the I2NSF system will
be considered for intelligent security provisioning.

ACKNOWLEDGMENTS

This work was supported by the Institute of Informa-
tion & Communications Technology Planning & Evaluation
(IITP) grant funded by the Ministry of Science and ICT
(MSIT), South Korea (No. RS-2024-00398199 and IITP-2025-
RS-2023-00254129). Note that Jaehoon (Paul) Jeong is the
corresponding author.

REFERENCES

[1] P. Lingga, J. P. Jeong, and L. Dunbar, “Icsc: Intent-based closed-
loop security control system for cloud-based security services,” IEEE
Communications Magazine, pp. 1–7, 2024.

[2] OpenAI. [Online]. Available: https://openai.com/index/
gpt-4o-mini-advancing-cost-efficient-intelligence

[3] J. P. Jeong, C. Chung, T.-J. Ahn, R. Kumar, and S. Hares, “I2NSF
Consumer-Facing Interface YANG Data Model,” Internet Engineering
Task Force, Internet-Draft draft-ietf-i2nsf-consumer-facing-interface-dm-
31, May 2023, work in Progress. [Online]. Available: https://datatracker.
ietf.org/doc/draft-ietf-i2nsf-consumer-facing-interface-dm/31/

[4] J. White, Q. Fu, S. Hays, M. Sandborn, C. Olea, H. Gilbert, A. Elnashar,
J. Spencer-Smith, and D. C. Schmidt, “A prompt pattern catalog to
enhance prompt engineering with chatgpt,” 2023. [Online]. Available:
https://arxiv.org/abs/2302.11382

[5] H. Chase, “LangChain,” Oct. 2022. [Online]. Available: https:
//github.com/langchain-ai/langchain

[6] J. J. Jiang and D. W. Conrath, “Semantic similarity based on
corpus statistics and lexical taxonomy,” 1997. [Online]. Available:
https://arxiv.org/abs/cmp-lg/9709008

[7] A. Parnami and M. Lee, “Learning from few examples: A summary
of approaches to few-shot learning,” 2022. [Online]. Available:
https://arxiv.org/abs/2203.04291

https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence
https://datatracker.ietf.org/doc/draft-ietf-i2nsf-consumer-facing-interface-dm/31/
https://datatracker.ietf.org/doc/draft-ietf-i2nsf-consumer-facing-interface-dm/31/
https://arxiv.org/abs/2302.11382
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://arxiv.org/abs/cmp-lg/9709008
https://arxiv.org/abs/2203.04291

	Introduction
	Related Work
	Methodology
	Natural Language Understanding
	Prompt Engineering
	Prompt Selector


	Implementation
	Execution Flow
	Conclusion
	References

